Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации.
Что такое квантовый компьютер? Разбор
Пока вы ждете свой квантовый компьютер, есть несколько возможностей поэкспериментировать с квантовыми устройствами и симуляторами. Многие крупнейшие мировые технологические компании предлагают квантовые услуги. Эти квантовые сервисы в сочетании с настольными компьютерами и системами создают среду, в которой квантовая обработка используется наряду с настольными компьютерами для решения сложных задач. IBM предлагает среду IBM Q с доступом к нескольким реальным квантовым компьютерам и симуляциям, которые вы можете использовать через облако. Alibaba Cloud предлагает облачную платформу для квантовых вычислений, где вы можете запускать и тестировать пользовательские квантовые коды. Microsoft предлагает набор для квантовой разработки , который включает язык программирования Q , квантовые симуляторы и библиотеки разработки готового к использованию кода. Rigetti имеет квантовую облачную платформу , которая в настоящее время находится в бета-версии.
Будущее квантовых вычислений Мечта состоит в том, чтобы квантовые компьютеры дали нам возможность решать проблемы, которые ранее считались слишком ресурсоемкими и слишком сложными для решения. Мы надеемся, что эта технология поможет нам понять окружающую среду и найти лекарства от неизлечимых болезней. Транзисторные компьютеры слишком медленны для таких сложных вычислений и выполнения такого невероятного объема анализа данных. Квантовые вычисления справляются по крайней мере, теоретические с гигантскими объёмами данных и обрабатывают их за долю времени настольного компьютера. Для обработки и анализа данных, на которые настольному компьютеру потребуется несколько лет, квантовому компьютеру нужно несколько дней. Квантовые вычисления всё ещё находятся в зачаточном состоянии, но они способны решать самые сложные мировые проблемы со скоростью света.
Никто не может точно сказать, насколько далеко вырастут квантовые вычисления и насколько будут доступны квантовые компьютеры. Существуют даже мнения, что квантовые вычисления так и останутся лабораторными проектами и не смогут выйти на промышленный уровень. Всё рассудит время! А что Вы думаете о будущем квантовых вычислений?
Они так и называются Quantum Bits, или Кубиты. Что же такое кубиты? Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находится одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции. Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0. Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка…. В нашем случае они одновременно 1 и 0! Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось. Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики! Квантовый компьютер внутри Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество. И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать. И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки. Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной! Принцип работы квантового компьютера Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера: Для решения подобной системы нам понадобится компьютер с 3 кубитами. Помните, что классический компьютер должен был пройти все варианты один за одним?
Сила же квантового компьютера именно в том, что мы берём несколько кубитов, которые как вы помните можно представлять как крутящиеся монетки, и взаимодействуем именно с вероятностями их выпадения в 0 орел или 1 решка , а не самими результатами 0 и 1. Вот это уже куда более интересно. В наших алгоритмах мы больше не мыслим концепциями «прочитай здесь, если 1, переложи туда», а начинаем как бы настраивать взаимодействие наших монеток кубитов пока они еще крутятся, чтобы в итоге получить интересующий нас результат. Как вы понимаете, никто не гарантирует какой стороной упадёт первый кубит, а значит и нельзя ничего гарантировать про второй, и так далее. Получается как будто дерево расчёта вариантов исхода алгоритма. Это и даёт нам вот ту самую экспоненциальную скорость вычислений в квантовом компьютере. В конце же наше дерево вычислений всё равно приведёт к одному результату с наибольшей вероятностью, а к другим с наименьшей. Это и будет ответ алгоритма. Если хотите более подробного разбора дерева по шагам, рекомендую вот эту годную статью. Мы не перебираем все варианты одновременно, как объясняют во многих статьях для новичков. Мы скорее настраиваем вероятности наших кубитов по ходу программы так, чтобы правильный результат засветился на выходе с большей вероятностью, чем неправильный. Условно говоря, мы подкручиваем наши монетки и говорим как им вращаться друг относительно друга, чтобы в итоге они выпали на стол в комбинацию, например, «орел-решка-орел» 010. Это и будет правильный ответ алгоритма. Тогда в 1 случае из 10 квантовый компьютер будет вполне легально нам врать, выдавая неправильный ответ. Тогда мы просто запускаем алгоритм много-много раз как настоящие боги инженерии! Побеждают, как обычно, китайцы. Белые же европейцы в это время воюют за запрет термина «превосходство» потому что оно оскорбительно и нетолерантно. Лет через пять меня точно отменят за этот пост. На практике же момент «квантового превосходства» не означает ничего, кроме того, что можно будет открыть шампанское и выпить за технологический прогресс. Сейчас объясню. Все эксперименты по квантовому превосходству по прежнему проводятся на специально подобранных задачках, которые квантовый компьютер должен щёлкать на раз, а классический пыхтеть тысячелетиями. Читеры вставляют палки в колёса, короче, и всё равно не могут догнать. Разве что иногда. Именно поэтому квантовое превосходство интересно журналистам и историкам, но точно не инженерам. Я как инженер жду не формального победителя первого забега, а того, кто покажет мне первый стабильный квантовый компьютер. Сейчас с этим всё плохо. С текущим количеством шумов они попросту бесполезны для практических задач. Компьютер, который считает быстро, но постоянно врёт — разве это годится? Превосходство у них, блин. Случайно подняться на гору легко — куда сложнее подниматься на неё каждый день. Можно использовать эту фразу как кредо по жизни. The Алгоритм Время программировать программы! На уроках информатики в 8 классе сегодня каждому школьнику рассказывают, что любой компьютер на самом деле состоит из кучки простейших операций над одним или двумя битами, называемых логическими вентилями или логическими гейтами, если вы дитя улиц и учились по английскому учебнику, как я. Хитро соединив проводами пару-тройку вентилей можно получить сумматор или простейшую память — всё это базовые элементы любого процессора. Потом они соберут из этих операций жирные высокоуровневые языки программирования. Начнется бум кремния, крах доткомов, курсы «профессия Data Scientist за неделю» и вот уже даже бездомные пишут на React за еду. Короче, в квантовых компьютерах всё то же самое! Только уровень развития тут пока плавает где-то до изобретения ассемблера. Представляете сколько всего еще впереди? Я обещал вам квантовый Hello, World — держите. Как и любой Hello World, он абсолютно бесполезен. Он лишь подбрасывает две монетки, связывает одну с другой и говорит орлами они упали или решками. Разберём всё подробно по шагам. Итак, нам нужна схема из 2 кубитов и 2 обычных битов. Импортируем все нужные тулзы и начинаем рисовать. Дальше накидываем гейты. Потому что можем. Я хочу перевести первый кубит в суперпозицию гейтом H, то есть «подбросить» эту монетку. Физически обоснованный! Но мы не хотим читать 0 или 1, мы хотим программировать на вероятностях. Потому вторым гейтом я наложу условие CNOT. Если наш кубит выпадает в 1 — он автоматически перевернёт и соседний кубит. То есть сделает из 0 в 1. Если нет — ничего не изменится.
С этим пока большие проблемы — это сильно мешает масштабировать систему. У других платформ есть похожие серьезные проблемы. Еще есть проблемы с оборудованием — иногда под квантовые компьютеры нужно изобретать новые устройства. Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости. Основная проблема при создании квантовых компьютеров — это создание кубитов в большом количестве и их связывание, время жизни всей системы — Как не специалистам, которые интересуются квантовыми компьютерами, понимать, действительно ли новое открытие — шаг вперед для этой отрасли или очередная новость ради кликов? На что обратить внимание? Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение. Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций. Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств? И можно писать свои квантовые схемы и считать алгоритмы. Каждый разработчик заинтересован в увеличении количества практических задач, которые можно делать на их квантовом компьютере, поэтому стоимость удешевляется. По количеству инвестиций в сектор можно сделать вывод о том, что прогресс есть. Это косвенный параметр — если сотни инвесторов вкладывают и отрасль растет, это говорит о многом. Видимо, мы близки к решениям, которые станут практическими. Но при этом есть всего 80 организаций, которые делают квантовые компьютеры. Но цифры говорят, что в hardware проинвестировали 1,5 млрд. И из них львиную долю забрали 12 компаний. Специалисты здесь нужны в квантовой физике, математике, инженеры нарасхват. Интересный факт: советская школа здесь считается сильной. Программа разделена на несколько дорожных карт — квантовые вычисления курирует Росатом , коммуникации РЖД и Центр метрологии и сенсоры Ростех. Например, уже появилась специальная квантовая линия связи между Москвой и Петербургом — это основной протокол квантовой криптографии сегодня. По моим ощущениям, они отстают от мировых компаний на 3—5 лет. Но у них серьезные кадры и подход — они однозначно разработают что-то полезное.
Количество кубитов в квантовых компьютерах — это обман. Вот почему
Благодаря этому подходу при реализации квантовых алгоритмов на куквинтах становится возможным сократить число двухчастичных гейтов, то есть задействующих две физические системы», — рассказал заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров. Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли — обобщенную на n кубитов версию универсального контролируемого обратимого вентиля. Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1. Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов.
Для демонстрации процессов был выбран именно этот алгоритм, так как для его выполнения необходимо неоднократно реализовать многокубитные гейты. Мы сравнили три способа декомпозиции многокубитных вентилей в рамках выполнения данного алгоритма на 2-10 кубитах, когда в качестве носителей информации используются кубиты, кутриты и куквинты, и продемонстрировали, как сокращается число двухчастичных гейтов», — пояснила эксперт научного проекта НИТУ МИСиС, научный сотрудник РКЦ Анастасия Николаева. Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88.
Полученные учеными результаты применимы к квантовым процессорам , основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие. Статья опубликована в научном журнале Entropy. Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам.
Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно — из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров : электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы». За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии.
При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google , IBM и других мировых лабораторий, рассказали в НИТУ МИСИС. По словам ученых, главная задача кубита — целостно хранить и обрабатывать информацию. Случайный шум и даже просто наблюдение способны привести к потере или изменению данных.
Для устойчивой работы сверхпроводниковых кубитов часто необходима чрезвычайно низкая температура окружающей среды — близкая к нулю Кельвин, что в сотни раз холоднее температуры открытого космоса. В ходе испытаний для защиты кубитов от шума исследователи добавили в цепь супериндуктор — сверхпроводниковый элемент с высоким уровнем сопротивления переменному току, который представляет собой цепочку из 40 джозефсоновских контактов — структур из двух сверхпроводников, разделенных тонким слоем диэлектрика. Основной плюс флаксониумов заключается в том, что с ними можно работать на низкой частоте — порядка 600МГц.
Известно, что чем меньше частота, тем больше время жизни кубитов, а значит больше операций с ними можно выполнить. В ходе испытаний оказалось, что диэлектрические потери флаксониевых кубитов позволяют держать состояние суперпозиции дольше, чем у трансмонов», — рассказал Илья Беседин, один из авторов исследования, инженер научного проекта лаборатории «Сверхпроводящие метаматериалы» НИТУ МИСИС. В качестве элемента, преобразующего входные состояния кубитов на выходные, ученые использовали высокоточные двухкубитные вентили fSim и CZ.
А для того, чтобы привести кубиты в резонанс друг с другом применялась параметрическая модуляция потока одного из кубитов системы. В целом, по мнению ученых, полученные результаты открывают многообещающий подход к отказоустойчивым квантовым вычислениям с низкочастотными кубитами, которые благодаря своим улучшенным когерентным свойствам могут стать конкурентоспособной альтернативой широко используемым сверхпроводниковым процессорам на кубитах-трансмонах. В дальнейшем планируется продолжать исследования с вычислениями на базе кубитов-флаксониумов, а именно: оптимизировать систему управления кубитами, улучшить показатели считывания и приступить к разработке многокубитных систем на их основе.
Статья об исследовании, которое приближает создание квантового компьютера к реальности, опубликована в npj Quantum Information — Nature. Команда исследователей под руководством члена научного совета РКЦ профессора Алексея Устинова провела эксперимент по измерению состояния сверхпроводящего кубита. Ученым удалось наблюдать периодически изменяющийся сигнал кубита, а также измерить его резонансную частоту.
Сверхпроводящие кубиты представляют собой колечки сверхпроводника диаметром несколько микрон. В некоторых местах колечек есть разрывы нанометровых размеров - их называют джозефсоновскими переходами. Сверхпроводящие колечки охлаждают до очень низкой температуры с помощью смеси жидких гелия-3 и гелия-4 и помещают в сверхточно настроенное слабое магнитное поле.
В результате они приобретают квантовые свойства, сходные со свойствами атомарных спинов.
Они могут находиться в суперпозиции. Это означает, что при измерении системы она имеет равные шансы перейти в одно из четырёх детерминированных 2-кубитных состояний. Запутанность — ещё одно часто встречающееся умное слово, которое сбивает с толку.
Скажем, при двух запутанных кубитах A и B в любой суперпозиции, когда Боб измеряет кубит A в состоянии 1, он мгновенно без измерения узнаёт состояние кубита B — тоже 1. Если Боб измерит кубит B, он убедится в этом. Что ещё более замечательно, это явление работает даже если A и B находятся на расстоянии триллионов световых лет друг от друга, так как расстояние не является коэффициентом запутанности. На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов.
Если 2-кубитная система с кубитами A и B находится в запутанном состоянии, кубиты могут находиться наполовину в состоянии 00, наполовину в 11. Таким образом, независимо от измерений системы два кубита останутся теми же самыми. Запутанная система может быть так же наполовину в 01, наполовину в 10, где два состояния всегда противоположны друг другу. Состояние 00 или 11 — два кубита останутся теми же Альберт Эйнштейн и другие физики считали запутанность ошибкой, потому что она противоречит специальной теории относительности Эйнштейна, в которой говорится, что ничто не может двигаться быстрее скорости света.
Если у Алисы есть кубит A, а у Боба есть кубит B оба кубита находятся в запутанности , и Боб улетит за миллиарды световых лет от Алисы, измерение её кубита покажет то же, что и измерение кубита Боба — любые изменения в кубите Алисы с применением квантового вентиля повлияют на состояние кубита Боба. Формирует ли это общение? Никто не знает наверняка, потому что невозможно найти точное вероятностное состояние кубита, так как измерение кубита вынуждает его перейти в одно из двух детерминированных состояний. Этот вопрос всё ещё горячо обсуждается.
Почему за кубитами будущее? Кубиты экспоненциально быстрее битов в некоторых вычислительных задачах, таких как поиск по базам данных или разложении чисел на множители что, как мы выясним ниже, может взломать интернет-шифрование. Важно понимать, что кубиты могут содержать значительно больше информации, чем биты. Один бит содержит такое же количество информации, что и кубит — оба они могут содержать одно значение.
Однако четыре бита используются для хранения того же объёма информации, что два кубита. Восемь бит сохраняют информацию, которую можно сохранить в трёх кубитах, так как 3-кубитная система может хранить восемь состояний — 000, 001, 010, 011, 100, 101, 110 и 111. И так далее. График ниже демонстрирует вычислительную мощность кубитов.
Еще ускорится разработка новых материалов для космических полетов, двигателей, сверхпроводящих систем. Сделать лучше не получается, потому что мы пока плохо моделируем. За одно интервью невозможно даже перечислить все те применения квантовых компьютеров, которые можно придумать. Даже если он просто сможет ускорить считанное количество процессов важных операций типа преобразования Фурье — это уже будет серьезным прогрессом. А это только один шаг к созданию универсального квантового компьютера. Поэтому такой хайп. Их уже применяют для оптимизации финансовых портфелей, маршрутов, оптимизации ИИ-алгоритмов. Что может остановить прогресс?
Допустим, если время жизни системы 0,001 секунда, то можно не успеть вычислить что-то важное. Надо думать, как удерживать качество вычислений и масштабировать их. Возьмем компанию IonQ — в нее проинвестировали уважаемые инвестиционные фонды со всего мира, она даже стала публичной. Они делают системы на ионах, и проблема в том, что там есть ионные ловушки, но есть предел количества ионов, который можно уловить. И надо придумать механизм связывания ловушек между собой. С этим пока большие проблемы — это сильно мешает масштабировать систему. У других платформ есть похожие серьезные проблемы. Еще есть проблемы с оборудованием — иногда под квантовые компьютеры нужно изобретать новые устройства.
Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости. Основная проблема при создании квантовых компьютеров — это создание кубитов в большом количестве и их связывание, время жизни всей системы — Как не специалистам, которые интересуются квантовыми компьютерами, понимать, действительно ли новое открытие — шаг вперед для этой отрасли или очередная новость ради кликов? На что обратить внимание? Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение.
Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций. Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств? И можно писать свои квантовые схемы и считать алгоритмы.
Поэтому на первый взгляд при прохождении через ферромагнетик пары должны распадаться, но если слой ферромагного материала достаточно тонкий, этого не происходит. При этом, однако, при правильном подборе материала происходит сдвиг фаз волновых функций на значение числа пи отсюда и название.
На самом деле внешнее магнитное поле при работе кубита нужно ровно для этого же. На самом деле кубиты при этом живут достаточно долго по сравнению со временем, которое требуется на выполнение одной логической операции. Кроме того, существуют специальные методы, так называемые «методы коррекции ошибок» в квантовых вычислениях. Они были предложены теоретически, и были даже первые эксперименты, которые такие методы уже продемонстрировали, в том числе со сверхпроводниками. Эти методы позволяют фактически корректировать сбои когерентности в квантовой системе. Для этого необходимо, чтобы система жила хотя бы какое-то количество определенных операций. То есть если мы можем за время без корректировки сделать 10 тысяч операций, то оказывается, что можно принципиально построить схему исправления ошибок, которая позволит такой компьютер использовать уже долговременно.
Время же одной операции на наших кубитах составляет несколько десятков наносекунд. То есть мы можем успеть выполнить порядка 100 операций даже с нашими скромными значениями. А чем эти кубиты отличаются от того, который есть у вас? Если не вдаваться в подробности, то это тоже кольца, но в них встроены не только джозефсоновские переходы, но и более сложные элементы. Обычно СКВИДы используются в качестве сверхчувствительных магнитометров для измерения очень слабых магнитных полей. В СКВИДе волны куперовских пар электронов, пройдя через два джозефсоновских перехода, проявляют интерференцию, похожую на оптическую картину прохождения световых волн через две щели. Амплитуда интерференционного тока зависит от внешнего магнитного поля, что позволяет в случае трансмона изменять его квантовые уровни энергии.
Так что же можно сделать на основе кубитов такого, чего еще никто не делал? Есть такая интересная задача, как создание квантовых метаматериалов. Она находится на стыке задач лаборатории, созданной в МИСиС, и лаборатории квантового центра, которая занимается кубитами. Мы с уже упомянутым Валерием Рязановым на самом деле присутствуем и там, и там, это два проекта, которые двигаются параллельно. Вот у них сближение как раз в том, что сверхпроводящие метаматериалы, которые изучаются в МИСиС, могут быть превращены в квантовые, если в качестве элементов использовать кубит. Свойства материалов при взаимодействии с таким излучением определяются только их внутренней структурой. Сейчас метаматериалы, особенно микроволновые, крайне популярны.
Например, с помощью них создаются « плащи-невидимки », скрывающие объекты от того же излучения. Все эти вещи делались с классическими резонаторами, которые имеют, во-первых, потери, что в сверхпроводниках отсутствует, а во-вторых, совершенно не квантовые. В данном случае мы можем руками сделать фактически метаматериал, состоящий из метаатомов, которые ведут себя как настоящие двухуровневые системы и в состоянии ноль и один.
Самое недолговечное в мире устройство стало «жить» в два раза дольше
Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность. Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. Отечественные кубиты состоят из четырех джозефсоновских контактов и выполнены методом литографии из тончайших пластин алюминия, толщиной всего 2 нанометра, которые разделены слоем диэлектрика. При успешной реализации планов, квантовый компьютер на базе 12 сверхпроводящих кубитов станет крупнейшим достижением российских ученых в этом направлении. Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
Начнем с понятия кубита и его отличий от бита классических компьютеров. Чтобы создать кубит, ученые должны найти место в материале, где они могут получить доступ к этим квантовым свойствам и управлять ими. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement.
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа. Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255. Что такое кубиты для квантовых компьютеров? В квантовом компьютере основным элементом является кубит – квантовый бит. Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы).
Квантовые компьютеры: как они работают — и как изменят наш мир
К тому же, таким образом повышается производительность квантовых систем и вырастает скорость выполнения операций. Так, один куквинт кудит в пяти состояниях заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами. В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы. В представленном на страницах Entropy примере специалисты показали, как можно реализовать модель декомпозиции обобщенного вентиля Тоффоли обобщенную на n-кубитов версию вентиля контролируемое НЕ.
Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета. Какие компании разрабатывают квантовые компьютеры уже сегодня? Формально дальше всех в этой гонке продвинулась канадская компания D-Wave.
Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q. Его мощность, как утверждают в компании составляет 2000 кубитов. Однако многие сомневаются в том, что машины D-Wave можно называть полноценными квантовыми компьютерами, поскольку они способны решать лишь узкий круг вычислительных задач. С этим мнением не согласны в Google. Американская IBM готовится вывести на рынок квантовые компьютеры с вычислительной мощностью 50 кубитов. Произойдет это, как утверждают в компании, уже в ближайшие несколько лет. С помощью квантовых компьютеров, получивших предварительное название IBM Q, можно будет, в частности, «распутать» сложные молекулярные и химические взаимодействия, что приведет к открытию новых лекарств и материалов, считают в IBM.
Большие изменения ждут сферу логистики: будут найдены оптимальные пути для наиболее эффективной доставки товаров. Квантовые компьютеры также позволят найти новые способы моделирования финансовых данных и выделить ключевые глобальные факторы риска, что обезопасит инвестиции. В сфере искусственного интеллекта и машинного обучения можно будет обрабатывать очень большие объемы данных например, связанные с поиском изображений или видео.
Проект разработки квантового компьютера был запущен в 2019 году, над ним работали учёные из Российского квантового центра и физического института им. Лебедева РАН при координации Росатома. А уже до конца текущего года в России может появиться 20-кубитный квантовый компьютер. Также, как пишет www1.
Их главная задача — узнать секретную информацию.
Если не напрямую от нас, то путем взлома смартфона или компьютера. Но совсем скоро эти воры останутся не у дел. Потому что защищать наши деньги будут при помощи квантовой криптографии, или, как ее еще называют, квантового распределения ключей. То есть мы используем только одни маленькие очень сильно ослабленные лазерные импульсы. И потом с их помощью, скажем так, передаем ключ. В этом случае не происходит передачи непосредственной информации. Мы передаем именно ключ", — пояснила кандидат физико-математических наук, доцент Московского технического университета связи и информатики Татьяна Казиева. Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов.
Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании. При этом злоумышленники добраться до них никогда не смогут. Система тут же отреагирует на любую попытку взлома. Но это не все, на что способны кванты.
Инвестиции в квантовые компьютеры: на что стоит обратить внимание
Сейчас 16 кубитов есть на нескольких платформах, при этом наибольшую вычислительную мощность демонстрирует ионный процессор. Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей.
Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений
Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то! Но что же получается? Он выдает все варианты сразу, а как получить правильный? Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.
Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно: 1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров! Думаете, что всё это звучит слишком хорошо, чтобы быть правдой?
Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго. У них есть определенная вероятность нахождения в состоянии 1 или 0.
Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ. Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз! Квантовые компьютеры сегодня Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера?
А то их пока как-то не наблюдается на полках магазинов! На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров. Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google.
В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет! Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2. Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами! Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность!
И это совсем не предел. Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений. Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления!
Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине. Такие кубиты неустойчивы к воздействиям окружающей среды, способной нарушить их корректную работу, а процедура считывания и записи информации на них крайне сложна.
По его словам, Intel изучает множество параметров, таких как разные размеры квантовых точек, разная геометрия, разная длина кубитов. Intel также встраивает в свой чип средства тестирования для определения производительности. Intel объявила о сотрудничестве с лабораторией физических наук LPS университета Мэриленда, Qubit Collaboratory LQC в Колледж-Парке, национальным исследовательским центром квантовых информационных наук QIS , Sandia National Laboratories, университетом Рочестера и университетом Висконсин-Мэдисон для продвижения исследований в области квантовых вычислений.
Компания планирует предоставить доступ для разработчиков и исследователей к своему набору инструментов Intel Quantum Software Development Kit SDK версии 1. Это своего рода дезагрегированный подход. На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк. LPS Qubit Collaboratory LQC является одним из исследовательских центров министерства обороны в области квантовых информационных наук QIS , учреждённых в рамках Закона о национальной квантовой инициативе 2018 г. Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства. По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния. Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения.
Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK. Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы. Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Учёный держит квантовый чип пинцетом, перед установкой на плату. Источник изображения: QuTech Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления. Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других.
Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления. Как взять одни свойства перспективных кубитов и отбросить другие? Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований TNO. В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы. Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева. В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона. Они же являются родительскими состояниями майорановских мод. Джозефсоновские переходы или контакты способны также захватывать сверхпроводящие квазичастицы со своими спинами.
Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Qiskit и среда IBM Quantum Composer. Google — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания заявила о достижении квантового превосходства в 2019 году с помощью своего 53-кубитного компьютера Sycamore. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Cirq и среда Google Quantum Playground.
Intel — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих и спиновых кубитов. Компания имеет собственную лабораторию Intel Labs , где проводит исследования и разработки в области квантовых технологий. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Q и среда Intel Quantum Simulator. IonQ — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе ионных кубитов.
Компания имеет самый мощный коммерческий квантовый компьютер на 32 кубитах, доступный через облачный сервис IonQ Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык QUIL и среда IonQ Studio. Xanadu — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе фотонных кубитов. Компания имеет самый мощный коммерческий квантовый компьютер на 24 фотонных кубитах, доступный через облачный сервис Xanadu Quantum Cloud.
Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык PennyLane и среда Xanadu Quantum Playground. Перспективы развития индустрии квантовых вычислений Индустрия квантовых вычислений имеет большой потенциал для решения сложных задач в различных областях науки, технологии, бизнеса и общества. Среди возможных применений квантовых компьютеров можно выделить следующие: Моделирование химических реакций и свойств материалов — это позволит создавать новые лекарства, биотоплива, батареи, солнечные панели и космические аппараты. Оптимизация сложных систем и процессов — это позволит улучшать эффективность и качество в областях, таких как логистика, транспорт, энергетика, финансы и маркетинг.
Криптография и кибербезопасность — это позволит создавать новые способы шифрования и дешифрования данных, а также взламывать существующие криптосистемы. Искусственный интеллект и машинное обучение — это позволит ускорять и улучшать алгоритмы обработки больших объемов данных, распознавания образов, генерации текста и речи, анализа эмоций и принятия решений. Однако индустрия квантовых вычислений также сталкивается с рядом проблем и вызовов, которые затрудняют ее развитие и коммерциализацию. Среди них можно выделить следующие: Техническая сложность и высокая стоимость — построение и поддержание квантовых компьютеров требует использования сложных технологий и материалов, а также специальных условий, таких как сверхнизкие температуры, высокое вакуум и изоляция от внешних помех.
Это делает квантовые компьютеры дорогими в производстве и эксплуатации. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Это явление называется декогеренцией. Для борьбы с декогеренцией необходимо использовать специальные методы коррекции ошибок, которые увеличивают сложность и замедляют скорость вычислений.
Недостаток программного обеспечения и стандартов — квантовые компьютеры требуют разработки новых языков программирования, сред разработки, библиотек, фреймворков и протоколов, которые были бы адаптированы к специфике квантовых вычислений. Также необходимо разработать универсальные стандарты для интероперабельности между разными типами квантовых компьютеров и классическими компьютерами. Недостаток кадров и образования — квантовые вычисления требуют глубоких знаний в области физики, математики, информатики и инженерии. Однако количество специалистов в этой области ограничено, а система образования не успевает подготавливать новых кадров.
Также необходимо повышать осведомленность и интерес широкой публики к квантовым технологиям. Таким образом, индустрия квантовых вычислений находится на раннем этапе развития и имеет много проблем и вызовов, но также и большие перспективы для создания новых возможностей и ценностей для человечества. Заключение В этом обзоре мы рассмотрели основные понятия, принципы, типы, применения, игроков, проблемы и перспективы индустрии квантовых вычислений. Квантовые компьютеры — это вычислительные устройства, которые используют явления квантовой механики для передачи и обработки данных.
Они имеют потенциал решать те задачи, с которыми не способны справиться даже самые мощные суперкомпьютеры современности. Однако построение и поддержание квантовых компьютеров требует использования сложных технологий и материалов, а также специальных условий. Также необходимо разработать новое программное обеспечение и стандарты для квантового программирования и вычислений. Индустрия квантовых вычислений находится на раннем этапе развития и имеет много проблем и вызовов, но также и большие перспективы для создания новых возможностей и ценностей для человечества.