Новости красноярские ученые использовали наноалмазы

Новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов для обнаружения токсичных веществ (например, фенола) в производственных сточных водах разработал коллектив ученых из ФИЦ «Красноярский научный центр СО РАН». Красноярские ученые разработали новый композитный материал. Он недорог, прост в производстве и может обнаружить токсичные вещества, в частности фенол, в производственных сточных водах. Красноярские ученые создали технологию переработки рыбных костей, внутренностей и чешуи, способную стать одним из звеньев замкнутой системы жизнеобеспечения человека во время пребывания в космосе. Главная Наука ИНХ в зеркале прессы Ученые из Новосибирска и Красноярска создали новый материал из нанотрубок и наноалмазов.

«Летим на Марс!»: истории самых громких научных открытий в Красноярске

По словам ученой, применение таких микроорганизмов существенно безопаснее для окружающей среды, чем использование традиционных химических реагентов. Красноярские учёные в сотрудничестве с коллегами из Индии, Туниса и Саудовской Аравии достигли прогресса в области медицинских исследований. Красноярские ученые использовали наноалмазы. Наука в Красноярском крае. Красноярские ученые разработали метод получения нанокристаллов силицида железа в форме прямоугольных и треугольных нанопластин за счет нанесения частиц золота на кремниевую подложку для выращивания кристаллов. Группа ученых из Красноярского научного центра СО РАН, Туниса, Индии и Саудовской Аравии синтезировали кристаллы на основе органики и азотной кислоты. Новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов для обнаружения токсичных веществ (например, фенола) в производственных сточных водах разработал коллектив ученых из ФИЦ «Красноярский научный центр СО РАН».

Красноярские ученые использовали наноалмазы для выявления фенола в воде

В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Коллектив красноярских ученых из ФИЦ «Красноярский научный центр СО РАН» и Сибирского федерального университета разработал недорогой, простой в производстве и использовании композитный материал для обнаружения фенола в промышленных сточных водах. Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Композиционный материал имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы. В результате деятельности многих отраслей промышленности в поверхностные водоемы попадает большое количество химических соединений, практически неразлагаемых в природе и являющихся токсичными. Одно из таких — фенол и его производные.

Результаты исследования опубликованы в журнале Journal of Nanoparticle Research. Фенол — один из наиболее распространенных загрязнителей природных вод. Он используется в производстве пластмасс, фармацевтических препаратов, пестицидов и гербицидов. Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Он имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон.

В результате объект не растет в высоту, а образует новые грани. Благодаря такому эффекту, на подложке возникают кристаллы в виде прямоугольных и треугольных нанопластин. Исследователи отмечают, что наноструктуры подобных форм синтезируются только на поверхности с нанесенным на нее золотом. Нанокристаллы силицида железа с различной огранкой позволяют связать другие материалы с кремнием — основным материалом электроники. Они могут применяться в качестве электрических наноразмерных контактов в полупроводниках с низким непредусмотренным сопротивлением тока.

Также такие материалы можно использовать для создания нанопроволоки или для выращивания светоизлучающих диодов инфракрасного диапазона. Благодаря экологической безопасности кристаллы силицида металла с изменяемой формой и ориентацией будут служить для разработки лазерных диодов в волоконно-оптических линиях.

Учредитель: федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор: Лепухов Д. Электронная почта редакции сетевого издания: web kgtrk.

Красноярские ученые использовали наноалмазы

Чтобы создать новый материал, необходимы условия, приближенные к метеоритному удару. В огромную установку ученые кладут подложку с наращенном графеном, по которой ударяют ионами ксенона. В результате облучения за доли секунды поднимается высокое давление и температура, под действием которых и образуется новый материал. По своей структуре это не отдельные кристаллы, а целостная пленка со встроенными наноалмазами. Такой материал называют двумерным.

Новый материал может найти широкое применение — от использования в производстве новых типов дисплеев до медицинской диагностики. Материал представляет собой прочно связанную конструкцию из вертикально упорядоченных нанотрубок на поверхность которых нанесен слой наноалмазов. Полученный материал обладает рядом уникальных свойств, говорится в статье ученых, опубликованных в журнал Scientific Reports.

Эти инструменты могут избирательно повреждать раковые клетки в организме человека, если на них воздействует магнитное поле. Огромным преимуществом такого метода будет адресное уничтожение опухоли без повреждения здоровых тканей», — отметил доцент кафедры общей физики СФУ Роман Руденко.

Однако есть и сложность — эти частицы обладают собственным магнитным моментом и собираются в крупные образования, что недопустимо во время операции. Чтобы решить эту проблему, ученые предложили способ управления магнитным моментом при помощи механических напряжений в самом нанодиске.

Когда они добираются до нужных клеток тела, исследователи включают магнитное поле, и рецепторы клетки принимают сигнал о начале регенерации — процесса восстановления тканей. Наночастицы вводятся пациенту шприцом — это обычный укол, добавила Анна Кичкайло.

Новосибирские ученые скрестили алмаз и графен для получения нового материала

Красноярские ученые разработали новый композитный материал. Он недорог, прост в производстве и может обнаружить токсичные вещества, в частности фенол, в производственных сточных водах. Красноярские ученые использовали наноалмазы для выявления фенола в воде. Но сибирским ученым удалось выяснить, что наноалмаз засветится, если он будет находиться на кончике углеродной трубки, которая в несколько раз усиливает мощность даже небольшого электрического поля». «Красноярские ученые разработали новый биоразлагаемый пластик на основе полистирола и органического соединения – альфа-ангеликалактона, он полностью разлагается в лесной почве за семь месяцев. Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода.

В Красноярске создали композит, который светится в магнитном поле

Красноярские ученые синтезировали гибридные наночастицы, которые в будущем могут применяться в медицине. Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской а. Наноалмазы чуть дороже, там другая технология, их изготавливают взрывным, детонационным способом в камере. Ученые красноярского центра СО РАН научились определять токсичность наночастиц, которые используют при изготовлении современных лекарств.

Красноярские ученые научились находить яды в воде с помощью наноалмазов

Ученые Сибирского федерального университета СФУ и Красноярского научного центра СО РАН разработали технологию получения магнитных наночастиц ферригидрита для использования в биомедицине. Об этом сообщили в пятницу в пресс-службе СФУ. В сообщении говорится, что ферригидрит образуется в процессе жизнедеятельности бактерий и располагается на поверхности клеток в виде скоплений нанозерен.

Телефон редакции сетевого издания: 391 243-19-61. Все права на материалы, опубликованные на сайте, защищены в соответствии с российским и международным законодательством об интеллектуальной собственности. Любое использование текстовых, фото-, аудио- и видеоматериалов возможно только с согласия правообладателя ВГТРК.

Для лиц старше 16 лет. Учредитель — Федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания».

Главный редактор Панина Елена Валерьевна.

С чего начиналась ваша карьера учёного? По диплому я — врач-лечебник.

Но хорошо, что я достаточно быстро понял: практическая медицина — не моё. И со второго курса серьёзно занялся биохимией. В жизни мне везло на встречи с замечательными людьми, которые многому меня научили и в человеческом, и профессиональном плане.

Надо сказать, что врачом я так и не работал — в год окончания института мне предложили аспирантуру на этой кафедре. Но я очень рад, что учился в мединституте. Этот вуз даёт многое в плане формирования психологии человека.

Вероятно, это происходит потому, что ты постоянно сталкиваешься с радостью и горем, болью и избавлением от неё, жизнью и смертью. Всё это меняет мировоззрение человека в лучшую сторону, начинаешь по-иному воспринимать и рассматривать многие аспекты жизни. Наверное, именно по этой причине достаточно много выпускников красноярского мединститута стали хорошими писателями.

Это слово произношу с большой буквы. Я счастлив, что имею честь называться его учеником. Он всегда поддерживал и поддерживает все наши начинания, даёт импульсы для их развития, способствует движению вперёд.

Несмотря на возраст и колоссальную загруженность, самым активным образом участвует и в обсуждениях наших планов, и в анализе результатов исследований. Интерес к наноалмазной тематике с его стороны очевиден. Именно благодаря разговору Иосифа Гительзона с Анатолием Ставером мы стали изучать эти наночастицы.

Анатолий Михайлович сетовал на то, что при производстве наноалмазов изготовители испытывают какой-то физический дискомфорт. Забегая вперёд, скажу, что это было связано не с наноалмазами, а с технической стороной процесса их производства. Так наноалмазы появились в нашем институте, всем желающим предложили исследовать их свойства.

Тогда достаточных представлений о свойствах этого материала и том, как с ними работать, ни у кого не было. Поскольку ярких эффектов в экспериментах с данными наночастицами никто не получил, всё постепенно затихло. Результат эксперимента настолько нас ошеломил, что потребовался год, чтобы осмыслить выявленный эффект.

В случае с наноалмазами повезло: когда мы взглянули на этот материал как на адсорбент, решили нашу исследовательскую задачу эффективно и быстро и получили нетривиальный результат. А через год встретились вновь, с этого момента и начались систематические и разносторонние исследования свойств наночастиц и возможностей их применения в биологии и медицине. Расскажу ещё о нескольких направлениях наших исследований.

Одно из них очень модное сегодня во всём мире. Это создание систем адресной доставки веществ, применяемых в медицине. Цель благая — создать целенаправленный лекарственный препарат, чтобы он прицельно действовал в организме на определённый орган или очаг патологии.

Таким образом, повышается эффективность вводимого препарата — можно локально задать его высокую концентрацию в требуемом очаге патологии и при этом избежать массы негативных побочных эффектов. Как выглядит такая система доставки? Она состоит из трёх элементов: носителя, который доставляет препарат, самого лекарства и молекулы, которая будет направлять весь этот комплекс в нужное место.

Мы создали такую систему на основе наноалмазов, которые использовали в качестве носителя. В экспериментах in vitro в пробирке мы доказали, что сконструированная система устойчива и проявляет свою функцию. Работает ли эта система in vivo?

Многие учёные мира проводят такие исследования в пробирках, в том числе и с наноалмазами. Но что происходит с системой и прежде всего с носителем в организме? Система выполнила свою терапевтическую функцию.

Красноярские учёные создали экологичный пластик

Сетевое издание «Вести—Красноярск» зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций. Учредитель: федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор: Лепухов Д.

В данном случае на углеродную поверхность наносят каталитически активный металл. Такие катализаторы найдут применение в медицине, химическом производстве и малой энергетике. Вследствие того, что каждое ядро с оболочкой обладает магнитными свойствами, врачи и химики смогут управлять наночастицами, покрытыми благородными металлами, тогда как раньше они использовали в работе инструменты из золота или платины без управляемых характеристик. При химическом нанесении металла на углерод обычно образуются не гомогенные оболочки, а так называемые декорированные, то есть не полностью закрывающие материал ядра.

Скорее всего, это связано с плохой смачиваемостью материала частицы, наносимым материалом.

Таким образом был получен композит с уникальными свойствами: под воздействием даже слабого электрического поля он может светиться люминесцентным голубым светом. Эксперты говорят, что раньше подобные материалы светились только под действием сильного магнитного поля. Новое же соединение требует гораздо меньше энергии, и может быть полезно в самых разных сферах, в том числе, в медицинской диагностике, в изготовлении светильников и дисплеев.

Ученые предполагают, что плёночные никелевые нанодиски с двусторонним золотым покрытием больше всего подходят на роль «наноскальпелей» в клеточной хирургии опухолей — они будут эффективным средством визуализации поражённых клеток. Подписывайтесь на нашу страницу новостей "Независимый Красноярск" в telegram. Мы в популярных социальных сетях Загрузка.

Сибирские ученые создали материал из наноалмазов

Красноярские ученые использовали наноалмазы. Наука в Красноярском крае. Ученые Красноярского научного центра СО РАН и СФУ синтезировали новый многофункциональный композитный двумерный материал на основе природного минерала точилинита. Смотрите свежие новости на сегодня в Любимом городе | Красноярские ученые научились определять токсичность наночастиц. Коллектив красноярских ученых разработал именно такой метод обнаружения фенола в промышленных сточных водах. Он основан на использовании композитного материал, состоящего из нановолокон оксида алюминия и детонационных наноалмазов. Главный телеканал Красноярского края, рассказываем о последних новостях Красноярска и районов края. Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей.

Биолюминесцентные тесты откроют дорогу наноматериалам в медицину

Еще в Советском союзе ученые Института биофизики в Красноярске получили первые наноалмазы — серый порошок, получаемый из серии коротких взрывов углерода. Коллектив ученых из Красноярского научного центра Сибирского отделения РАН (СО РАН) и Сибирского федерального университета разработал недорогой. Красноярские ученые использовали наноалмазы. Наука в Красноярском крае. Красноярские ученые разработали метод получения нанокристаллов силицида железа в форме прямоугольных и треугольных нанопластин за счет нанесения частиц золота на кремниевую подложку для выращивания кристаллов. Ученые из Красноярского научного центра Сибирского отделения РАН предложили способ обнаружения фенолов в воде с помощью наноалмазов.

Похожие новости:

Оцените статью
Добавить комментарий