Новости теория суперсимметрии

Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля.

Суперсимметрия и суперкоординаты

Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК).

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания

Адронный коллайдер подтвердил теорию суперсимметрии Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2.
Экзамены суперсимметричной модели вселенной 1978 Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸 | Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

На днях теория суперсимметрии получила еще один удар от большого адронного коллайдера (бак. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц.

Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии

Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад.

LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера. На данном этапе определенности нет, все упирается в стоимость. Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты. Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше.

Гигаватт энергии расходует солидный город. А стоимость также зависит от того, что учитывать. В американской системе подсчета, которая учитывает все, стоимость будет раза в два больше, чем в европейской. В CERN финансирование фиксировано правительствами европейских стран. На этот бюджет они ничего заметно большего, чем LHC, построить не могут. До сих пор стоимости были более или менее посильными. Tevatron в современных деньгах стоит шесть млрд долларов, у LHC — сопоставимая цифра.

LHC в четыре раза длиннее, но за счет развития технологий, массового производства и накопленного опыта стоимость LHC получилась дешевле на метр, однако полные стоимости сопоставимы. Если говорить про строительство следующей машины, на мой взгляд, правильно было бы вкладываться в эксперименты с высокой светимостью. Их можно проводить на LHC его параметры позволяют это сделать , можно создавать новые установки на гораздо меньших энергиях. Главное, проводить прецизионные измерения, которые позволяют увидеть отклонения от предсказаний Стандартной модели. По величине этих отклонений можно судить, где находится «новая физика». Если по косвенным измерениям окажется, что для наблюдения следующих событий нужны колоссально высокие энергии, недостижимые для современной науки, то строить что-то с энергией больше LHC необходимости нет. Если же будет видно, что такая энергия нам доступна, тогда человечество будет создавать установку следующего уровня.

Я думаю, что сейчас лучше вкладываться в точные эксперименты на относительно низкой энергии. Это только мое мнение, его далеко не все разделяют. В нем с очень высокой точностью измеряется аномальный магнитный момент мюона. Это важно, так как сейчас мы наблюдаем расхождение между теорией и экспериментом. Замечу, что в теоретические предсказания аномального момента входит и вклад от сильного взаимодействия, который в настоящее время невозможно вычислить, основываясь на «чистой» теории. Обойти эти сложности можно, используя результаты других экспериментов. ВЭПП-2000 — коллайдер Института ядерной физики СО РАН в Новосибирске — предоставил необходимую информацию об адронных взаимодействиях, которая используется в вычислениях аномального магнитного момента мюона.

Другой эксперимент — Mu2e — нацелен на поиск безнейтринного распада мюона. Он использует то же самое накопительное кольцо, что и g-2, и начнется сразу после окончания g-2, примерно через два года. Согласно Стандартной модели, мюон распадается на два нейтрино и электрон или позитрон в случае положительно заряженного мюона. Когда я учился в университете, все было просто. Есть электрон, к нему привязано электронное нейтрино. Если у вас образовалось электронное нейтрино, вместе с ним должен образоваться электрон или позитрон в случае антинейтрино , но не может — мюон. А сейчас мы точно знаем, что принцип сохранения лептонного заряда нарушается в секторе нейтрино, а значит, и безнейтронный распад мюона, который запрещен законом сохранения лептонного заряда, возможен, хотя и с очень маленькой вероятностью.

Мы ожидаем, что эксперимент достигнет чувствительности порядка 10-16, то есть мы сможем зарегистрировать один безнейтронный распад мюона на 1016 распадов мюона. Такой чувствительности невозможно достигнуть в коллайдерных экспериментах. Но динамичнее всего развивается астрофизика.

Идея заключается в регистрации излучения в видимом и инфракрасном диапазоне. Даже если на детекторе с такой технологией не получится обнаружить вимпы, то он всё равно сослужит хорошую службу науке: на нём можно будет регистрировать другие события с большим энерговыделением, в том числе достаточно редкие. Например, такие детекторы можно будет использовать для регистрации солнечных нейтрино. Тёмная материя состоит из разных частиц, как и барионная?

Вполне возможно, что эта субстанция неоднородна и в ней присутствуют различные частицы. Что касается аксионов, метод их регистрации основан на том, что в условиях магнитного поля аксионы могут превращаться в фотоны, которые уже можно зарегистрировать. Проводились разные эксперименты, но, к сожалению, зарегистрировать аксионы пока не удалось. Можно сказать, что если бы не было тёмной материи, то наш мир был бы совершенно иным. Например, если тёмную материю «отключить», то гравитационная масса всех объектов во Вселенной окажется намного меньше, поэтому звёзды и планеты просто разлетятся в разные стороны, а галактики исчезнут. Например, плотность тёмной материи значительно выше в центрах галактик, чем в среднем по Вселенной. В то же время наблюдаются галактики, где почти отсутствует тёмная материя или, наоборот, почти полностью состоящие из неё.

При этом считается, что тёмная энергия распределена достаточно равномерно. Как они связаны и что это вообще такое? Тёмная энергия — это, по сути, величина, которая была введена Эйнштейном в своё время для объяснения стационарной модели Вселенной. Необходимость в этой переменной, казалось бы, отпала, когда Александр Фридман представил модель нестационарной Вселенной, и позже было экспериментально установлено, что Вселенная расширяется. Однако впоследствии выяснилось, что Вселенная не просто расширяется, а делает это с ускорением — это означает, что всё же существует некая дополнительная сила, о свойствах и природе которой мы пока ничего не знаем. Пока что есть только гипотезы, объясняющие, что это такое: например, что это некая энергия вакуума, отрицательное давление, которое и приводит к расширению Вселенной. Здесь можно вспомнить о существовании эффекта Казимира — экспериментально подтверждённого эффекта, где незаряженные тела притягиваются друг к другу в вакууме в результате энергетических колебаний физического вакуума.

Хотя этот эффект не связан с тёмной энергией и объясняется в рамках современных научных теорий, он показывает, что вакуум не является абсолютной пустотой.

К бозонам подобные аргументы не применимы. Бозон Хиггса, к примеру, имеет нулевой собственный момент импульса, так что ни в каком смысле мы не можем говорить о том, что он вращается влево или вправо.

Но из соображений суперсимметрии массы бозонов соответствуют массам фермионов. Поэтому если масса хиггсино равна нулю или мала , точно такой же должна быть согласно теории суперсимметрии масса его партнера — бозона Хиггса — даже с учетом квантово—механических поправок. Мы пока не знаем, верно ли это довольно изящное объяснение стабильности иерархии и компенсации поправок к массе хиггса.

Но если суперсимметрия действительно решает проблему иерархии, то мы многое можем сказать о том, каких результатов следует ожидать на БАКе. В этом случае мы знаем, какие именно новые частицы должны существовать, потому что у каждой известной частицы должен быть суперсимметричный партнер. Мало того, мы можем оценить массы новых частиц.

Разумеется, если бы суперсимметрия в природе соблюдалась в точности, мы бы сразу знали и массы всех суперпартнеров. Они были бы попросту идентичны массам соответствующих известных частиц. Однако ни одну частицу—суперпартнер до сих пор обнаружить не удалось.

Это свидетельствует о том, что суперсимметрия, даже если она реально существует в природе, не может быть строгой. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Согласно теории нарушенной суперсимметрии у каждой частицы по—прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели.

Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово—механических вкладов, которые сделали бы ее слишком большой. Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия.

Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса. Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется.

Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов.

Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный или цветовой заряд. Эти частицы при столкновении протонов или, точнее, при столкновении кварков и глюонов в них могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии.

Если это так, они оставят в детекторах очень заметные и характерные следы. Эти сигнатуры — экспериментальные свидетельства, оставляемые частицей — зависят от того, что происходит с частицей после возникновения. Большинство суперсимметричных частиц будут быстро распадаться.

Причина в том, что, как правило, для каждой такой тяжелой частицы существует более легкая частица такая как частицы Стандартной модели с точно таким же полным зарядом. Если это так, то тяжелая суперсимметричная частица распадется на частицы Стандартной модели таким образом, чтобы сохранился первоначальный заряд, и эксперимент обнаружит только частицы Стандартной модели. Вероятно, этого недостаточно, чтобы распознать суперсимметрию.

Однако почти во всех суперсимметричных моделях суперсимметричная частица не может распадаться исключительно на частицы Стандартной модели. После ее распада должна остаться другая более легкая суперсимметричная частица. Причина в том, что суперсимметричные частицы появляются или исчезают только парами.

Поэтому на месте распада одной суперсимметричной частицы должна остаться другая суперсимметричная частица. Следовательно, самая легкая из таких частиц должна быть стабильной.

Симметрия, суперсимметрия и супергравитация

ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.

Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной.

Рольф Хойер, генеральный директор ЦЕРН, регулярно включает его в качестве одной из целей «новой физики» для ускорителя. Но в некоторых прогнозах, перед тем, как гигантская машина начала свою работу в марте 2010 предполагалось, что сигналы SUSY окажутся быстрее. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в новых принципах природы, которые можно открыть только при большой энергии коллайдеров. Поэтому суперсимметричные частицы скорее всего можно будет заметить в начале 2015 года, когда мощность коллайдера, а следовательно столкновение частиц будет в два раза сильнее.

Но мне кажется, что в целом состояние отрасли, если иметь в виду теорию, довольно плачевное. С другой стороны, несмотря на все усилия, понимания того, как устроен мир на энергиях, превышающих типичные значения для Стандартной модели, у нас по-прежнему нет. Можно сравнить эту ситуацию с тем, как развивалась фундаментальная физика в 1950-е — 70-е годы: сначала вел эксперимент, все более мощные ускорители постоянно открывали большое число новых частиц, и совершенно непонятно было, как все это описывать и классифицировать. Старые подходы не работали. В 1959 году, выступая на конференции по физике высоких энергий в Киеве, Лев Ландау объявил, что прежний, гамильтонов, подход к теории поля умер, и остается лишь организовать ему достойные похороны. Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания. Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых. Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым. Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе. Мне кажется, что вопрос "нужно ли идти дальше? Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество. Не думаю, что апокалиптическая картина "общества всеобщего потребления", которую нам часто рисуют футуристы, будет воплощена в жизнь до такой степени, что фундаментальная наука станет никому не нужна и ее полностью прекратят финансировать. С другой стороны, есть немало примеров саморазрушительной динамики на уровне индивидуумов и сообществ, поэтому гарантий тут нет. Что касается чисто технической стороны, то в последнее время большое внимание уделяется разработке новых принципов ускорения частиц. Если прогресс в этом направлении будет достигнут, вовсе необязательно строить ускоритель размером с половину континента. В любом случае, пока экспериментаторы ведут в изучении физики частиц, мы будем двигаться в этом направлении. Бозон Хиггса - недостающее звено Стандартной модели За пределами Стандартной модели сейчас находится своеобразная "полоса незнания", побуждающая экспериментаторов строить новые машины и копаться в ней. Это копание проявляется в двух вещах — мы сталкиваем частицы на все более высоких энергиях, надеясь найти что-то новое, и более точно промеряем параметры их взаимодействий.

A40 10 , p. Nico, D. Gidley, and A. Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им. Kotov, B. Levin, V. Orthopositronium: «On the possible relation of gravity to electricity». Левин Борис.

Похожие новости:

Оцените статью
Добавить комментарий