Искусственный интеллект существенно улучшает точность аппаратной диагностики в медицине благодаря нескольким ключевым аспектам. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке.
Собянин: искусственный интеллект станет базовой медицинской технологией в Москве
Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. Мы активно развиваем искусственный интеллект в медицине. Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента. Борис Зингерман — директор Ассоциации разработчиков и пользователей искусственного интеллекта в медицине и его экспертиза в этом вопросе особенна ценна.
Что хотите найти?
Мы активно развиваем искусственный интеллект в медицине. В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.
Полная роботизация: как искусственный интеллект помогает врачам
С одной стороны — это чудо. С другой — окончила ли она "Гарвард"? Мы живём в мире, полностью пронизанным информационным окружением. А заменит ли врачей chatGPT? По мнению экспертов, искусственный интеллект никогда не заменит врачей, но врачи, использующие ИИ, заменят менее продвинутых коллег. В качестве примера он привел вопрос, адресованный chatGPT: "Опишите этапы удаления головы по Вишневскому, клинические ситуации, при которых операция полного удаления головы оправдана".
И, как пояснил эксперт, ответ будет следующий: "Удаление головы по методу Вишневского является сложной и опасной процедурой, которую должен выполнять только опытный хирург". Модератор сессии, директор по проектной деятельности ассоциации «Национальная база медицинских знаний» Андрей Алмазов спросил у директора Института перспективных исследований мозга МГУ им.
Во-вторых, были приняты стандарты в области ИИ в здравоохранении. Напомним, в феврале 2022 года Россия приняла несколько стандартов в области ИИ в медицине. Среди первых стандартов: «Интеллектуальные методы обработки медицинских данных.
Основные положения»; «Системы ИИ в клинической медицине — программа, методика клинических испытаний»; «Стандарт управления изменениями в системах ИИ с непрерывным обучением». Разрабатывается еще более 120 стандартов. Все это благодаря платформенному подходу. В 2019 году в Москве начался эксперимент по внедрению в систему столичного здравоохранения ИИ и цифрового зрения, старт которого пришёлся на то время, когда на мировом рынке только появились попытки обучить алгоритмы ИИ решению практических задач. Первая цель была направлена на то, чтобы опередить иностранных конкурентов, рассказал замруководителя Департамента здравоохранения Москвы Илья Тыров.
По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта. Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции. Так, в 2020-2022 годах на апробацию решений в рамках эксперимента выделено 900 млн рублей. По словам Ильи Тырова, ИИ в московском здравоохранении используется для поддержки решений в диагностике.
Например, цифровое зрение применяется в радиологии, ИИ помогает в расшифровке ЭКГ, также пилотируется аналитика патоморфологических исследований. К тому же ИИ автоматизирует рутинные процессы. Так, чат-бот принимает жалобы пациентов, видеоаналитика в медорганизациях следит за сервисом, а технологии распознавания речи переводят речь медработника в текст.
В результате сфера здравоохранения стала лидером по внедрению инноваций, в основном на базе искусственного интеллекта. Заместитель главы федерального минздрава Павел Пугачев отметил, что на данный момент зарегистрированы Росздравнадзором и уже применяются в больницах более 20 медицинских изделий на основе нейросетей. Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных.
Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей.
Заместитель главы федерального минздрава Павел Пугачев отметил, что на данный момент зарегистрированы Росздравнадзором и уже применяются в больницах более 20 медицинских изделий на основе нейросетей. Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников.
Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных.
Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии.
Искусственный интеллект в здравоохранении внедряют 70 регионов России
Важно понимать, как общество воспринимает такие новации и какие ожидания и опасения связаны с их использованием. Особый интерес в этой связи представляют сравнительные межстрановые исследования, так как в них раскрываются коллективные ориентации и ценности, присущие тому или иному обществу. Опросы ВЦИОМ и Pew показывают, что в российском и американском обществе пациенты больше будут чувствовать дискомфорт, чем комфорт, если врач будет полагаться на искусственный интеллект для диагностики заболеваний и рекомендации лечения. Это значит, что и в российском, и в американском обществе существуют опасения по вопросу применения ИИ в здравоохранении. К чему все это приведет? ИИ обладает способностью обрабатывать огромные объемы данных и находить скрытые закономерности. Теоретически это позволит врачам лучше исследовать болезни, быстрее и точнее ставить диагнозы и эффективнее лечить пациентов.
То есть прогноз эффективности ИИ в медицине в российском и американском обществе находится примерно на одном уровне. В целом российскому обществу присущ умеренный энтузиазм по вопросу использования ИИ в здравоохранении.
Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом. Они помогли предотвратить эпизоды гипогликемии. Таким образом, распространенные хронические состояния, такие как гипертония, депрессия и астма, теоретически можно лучше контролировать с помощью приложений.
Проблемы и ограничения Главная проблема будущего искусственного интеллекта в медицине заключается в том, насколько хорошо могут быть обеспечены конфиденциальность и безопасность данных. Существует риск выявления конфиденциальных данных пациента из истории болезни. Более того, есть риск преднамеренного взлома алгоритма для нанесения вреда людям в больших масштабах, например передозировки инсулина у диабетиков. Вторая проблема — неточная работа алгоритмов. Используемый сотнями больниц по всему миру для рекомендаций по лечению больных раком, алгоритм был основан на небольшом количестве синтетических случаев и очень ограниченом количестве реальных данных. Многие из его рекомендаций по лечению были ошибочными, например, предлагали использовать несовместимое лекарство для пациента с сильным кровотечением, что представляет явное противопоказание.
Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов.
Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей.
Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний.
Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков.
Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей.
Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии.
Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком.
Ситуация изменится совсем скоро: к концу этого года все субъекты РФ обязаны будут внедрить не менее одного медизделия с искусственным интеллектом в одну из централизованных подсистем государственной информационной системы в сфере здравоохранения. Это может быть, например, подсистема ведения интегрированной электронной медицинской карты или централизованный сервис информирования о взаимодействии лекарственных средств.
А в следующем году региональные медцентры обяжут отчитаться об использовании не менее трех программных решений на основе ИИ, одобренных Росздравнадзором. Минздрав полагает, что искусственный интеллект поможет повысить качество и доступность медицинской помощи. Так, в 2022 году в рамках эксперимента, который проводился в Москве, умные программы помогли врачам первичного звена поставить 9 млн верных диагнозов. Post Views: 1 227 согласие с обработкой персональных данных и политикой конфиденциальности Новости.
Яндекс Образование
Один из них уже находится на первой стадии клинических исследований. В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями. Это позволяет исследователям фокусироваться на наиболее перспективных стратегиях для дальнейшего изучения, а также снизить риски во время испытаний препаратов. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года. В 6 раз уменьшается время от обнаружения лекарства до проведения испытаний Искусственный интеллект может анализировать и предсказывать, как потенциальные лекарственные соединения будут взаимодействовать с белками, рецепторами и другими биологическими мишенями.
Камила Зарубина,.
В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции. Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками. Благодаря искусственному интеллекту научный прогресс ускоряется еще сильнее. В 2022 году ИИ начал ускорять научные открытия. Однако в 2023 году были запущены еще более значимые приложения искусственного интеллекта, связанные с наукой, — от AlphaDev, который делает алгоритмическую сортировку более эффективной, до GNoME, который облегчает процесс обнаружения материалов. Количество нормативных актов, связанных с искусственным интеллектом, в США значительно выросло за последний год и за последние пять лет.
В 2023 году было принято 25 нормативных актов, связанных с искусственным интеллектом, по сравнению с одним в 2016 году. Люди во всем мире лучше осведомлены о потенциальном влиянии ИИ и больше нервничают.
Кроме того, цифровой разум готов помочь в разработке новых лекарственных препаратов.
Искусственный разум проанализирует снимок и сделает описание патологии, сэкономив врачу время и силы. Он напомнил, что всем субъектам РФ необходимо в этом году внедрить не менее одного решения с ИИ, а в следующем - не менее трех. Пока большинство регионов выбрали технологии, работающие с медицинскими изображениями: маммографией, компьютерной томографией органов грудной клетки и головного мозга, рентген-снимками органов грудной клетки.
Также 32 региона заключили контракт на закупку решений для работы с электронными медкартами, говорится в презентации замминистра. Замминистра также обратил внимание, что перевес в этой сфере имеют российские продукты - из 24 медицинских изделий с ИИ, зарегистрированных Росздравнадзором, 17 - от российских разработчиков. Как работает анализ медицинских изображений?
А врач, когда работает с этим исследованием, уже использует результаты работы искусственного интеллекта, - рассказал "РГ" коммерческий директор компании Цельс Артем Капнинский. И мы эту работу делаем не для того, чтобы заменить его, а чтобы ему помочь. Когда врач работает вместе с искусственным интеллектом, это минимизирует возможность ошибки.
До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях".
Считается, что именно в это время родился искусственный интеллект в России. В то время, как она была разработана для применения в органической химии, она послужила основой для последующей системы MYCIN [4] , которая считается одним из наиболее значимых ранних применений искусственного интеллекта в медицине. Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах. Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
Все это делает работу докторов более эффективной и результативной. В честь Международного дня врача рассказываем про передовые технологии, которые сегодня облегчают работу специалистов. Искусственный интеллект ИИ для диагностики Управляемые ИИ чат-боты — одна из самых интересных тенденций в сфере цифрового здравоохранения. Диагностические инструменты анализируют огромные объемы данных о пациенте, включая медицинские снимки, результаты анализов и истории болезни, помогая врачам ставить точные и своевременные диагнозы. Алгоритмы машинного обучения позволяют выявлять закономерности и аномалии, которые порой просто невозможно отследить невооруженным глазом.
Особенно это касается обнаружения рака, диабета и сердечно-сосудистых заболеваний. Робототехника Роботизированная хирургия совершает революцию в операционной. Врачи получили возможность выполнять сложные операции с помощью автоматических систем, обеспечивающих улучшенную визуализацию и ловкость рук. Так, аппарат da Vinci, разработанный компанией Intuitive Surgical, считается одним из пионеров в данной области.
Эта роботизированная платформа позволяет хирургам проводить операции с крошечными разрезами и 3D-визуализацией, сводя к минимуму травматизацию тела пациента. Одно из наиболее значимых преимуществ роботизированной хирургии — уровень точности, ведь даже у самых опытных врачей дрожат руки.
Это человеческий выбор. Хочется помочь, и есть надежда. А если не получится? Ухудшим показатели. Это моральные и организационно-методические проблемы людей. Но может ли здесь помочь искусственный интеллект?
А это зависит от того, как настроен этот инструмент, на какой результат он нацелен. И не забываем, что инструмент — просто набор алгоритмов, зависящий от объема и качества данных «на входе», настройки, обучения и целеполагания. В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов.
Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать.
Личный блог" Перед столичными властями стоит задача превратить искусственный интеллект в базовую медицинскую технологию, сообщил Сергей Собянин на своем личном сайте. По его словам, в результате этого все московские врачи получат надежных цифровых помощников, которые подскажут оптимальную тактику лечения пациентов. Кроме того, исчезнет рутинная бумажная работа — медицинская информация будет регистрироваться и обрабатываться исключительно в цифровой среде, а врачи смогут больше времени уделять задачам, где действительно нужны их компетенции. Также будет внедрен "умный" проактивный подход, в рамках которого ИИ будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний, "подсвечивая" их медикам. Мэр отметил, что телемедицина станет обычной практикой, когда значительную часть рутинных проблем со здоровьем можно будет решить онлайн, без личного визита к врачу.
Традиционные вакцины часто содержат ослабленные или неактивные формы вируса или бактерии для стимуляции иммунного ответа. Однако мРНК-вакцины используют другой подход. Они используют небольшой фрагмент генетической информации вируса или патогена, чтобы дать указание нашим клеткам вырабатывать безвредный белок, похожий на часть вируса.
Этот белок запускает иммунный ответ, позволяя нашему организму распознавать настоящую инфекцию и бороться с ней. Эта технология потенциально способна произвести революцию в области терапии таких заболеваний, как рак, генетические нарушения и аутоиммунные состояния. Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков.
Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR. В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами.
В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик.
Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами. Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта. VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями.
Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий.
Машины лечат людей: как нейросети используют в российской медицине
Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. Решения с использованием искусственного интеллекта (ИИ) в медицине внедряют 70 российских регионов. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика?
Олия Артемова
VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году Сфера здравоохранения развивается семимильными шагами. Все это делает работу докторов более эффективной и результативной. В честь Международного дня врача рассказываем про передовые технологии, которые сегодня облегчают работу специалистов. Искусственный интеллект ИИ для диагностики Управляемые ИИ чат-боты — одна из самых интересных тенденций в сфере цифрового здравоохранения.
Диагностические инструменты анализируют огромные объемы данных о пациенте, включая медицинские снимки, результаты анализов и истории болезни, помогая врачам ставить точные и своевременные диагнозы. Алгоритмы машинного обучения позволяют выявлять закономерности и аномалии, которые порой просто невозможно отследить невооруженным глазом. Особенно это касается обнаружения рака, диабета и сердечно-сосудистых заболеваний.
Робототехника Роботизированная хирургия совершает революцию в операционной. Врачи получили возможность выполнять сложные операции с помощью автоматических систем, обеспечивающих улучшенную визуализацию и ловкость рук. Так, аппарат da Vinci, разработанный компанией Intuitive Surgical, считается одним из пионеров в данной области.
Эта роботизированная платформа позволяет хирургам проводить операции с крошечными разрезами и 3D-визуализацией, сводя к минимуму травматизацию тела пациента.
Кроме того, ИИ позволяет эффективно контролировать ход заболеваний, например, онкологических, или выявлять его первые симптомы и признаки, свидетельствующие о скором развитии болезни. Дебютной разработкой в этой области стала система Webiomed компания «К-Скай» — резидент «Сколково». Как медицинское изделие платформу прогнозной аналитики и управления рисками в здравоохранении зарегистрировали 3 апреля 2020 года. Это первая система ИИ в России, которая способна обработать большой объем информации о пациенте, выявить на основе данных подозрения на заболевания и спрогнозировать возможное ухудшение здоровья. При этом ИИ изучает не только медицинские показатели, но и социальные данные.
Платформа формирует цифровой паспорт пациента. Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее. В России этой сфере уделяется особое внимание. Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии. В их число вошли Botkin. Качество работы подтверждает статистика.
Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие.
Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны.
При помощи машинного обучения, медицинские учреждения могут эффективно анализировать данные пациентов в реальном времени, что позволяет быстро идентифицировать потенциальные проблемы и предотвращать развитие заболеваний. Системы на базе ИИ могут анализировать медицинские изображения с большой точностью, помогая диагностировать различные заболевания, включая рак и диабет.
По данным mos. Все они одобрены Росздравнадзором, причем 11 — это нейросети, которые помогают врачам-рентгенологам искать признаки заболеваний на компьютерных снимках рентгенограмме, томограмме, маммограмме и флюорограмме. Кроме того ИИ помогает в анализе генетической информации, что способствует разработке персонализированных методов лечения.
В поликлиниках Москвы используют программы на базе ИИ, которые помогают терапевтам поставить пациенту диагноз. Нейросеть анализирует жалобу пациента, и сравнивает ее с несколькими миллионами записей других пациентов из базы ЕМИАС Единой медицинской информационно-аналитической системе. Сфера прогнозирования заболеваний также претерпела существенные изменения, с появлением алгоритмов, способных предсказывать возникновение заболеваний на основе анализа большого объема данных.
Например, исследования, основанные на данных электронных медицинских карт, могут предсказать риск развития диабета, сердечных заболеваний или депрессии у конкретного пациента. К примеру, IBM Watson для лечения онкологии проанализировала 30 миллиардов снимков, и помогает врачам выбирать оптимальные методы лечения рака на основе анализа огромного объема медицинских данных. Стартап Healx использует ИИ для сопоставления лекарств, прошедших клинические испытания, с редкими заболеваниями, которые они могли бы лечить.
Arterys использовала облачные вычисления для предоставления изображений 4D Flow больничным радиологам через веб-браузер, что позволяет им принимать жизненно важные решения о лечении. Компания Thymia, основанная в 2020 году, разработала видеоигру на основе искусственного интеллекта, которая призвана обеспечить более быструю, точную и объективную оценку психического здоровья. Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий.
Авторы выделили пять основных уровней, где внедрение ИИ за последние годы дало наибольшие результаты: на уровне живой клетки — ИИ применяется в биоинформатике, биотехнологических и медицинских исследованиях, дизайне лекарственных препаратов; на уровне тканей и органов — активно используются технологии компьютерного зрения; на уровне целого организма — интенсивно развивается разработка носимых устройств медицинский интернет вещей , мобильные приложения, цифровые медицинские консьержи, платформы агрегации медицинских данных и др.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. — узнаете, как ИИ меняет рынок здравоохранения и фармацевтики; — разберете реальные кейсы применения Data Science в медицине и познакомитесь с прикладным анализом данных; — поймете с чего начать карьеру в HealthTech. Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что.
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме | Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. |
Альманах ИИ №11. ИИ в здравоохранении | Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. |