Новости сколько кадров видит человек в секунду

Ирландские исследователи обнаружили «прирожденных геймеров» — тех, кто способен увидеть в секунду большее количество кадров. Человек воспринимает около 24 кадров в секунду. Это означает, что при просмотре видео с частотой кадров 24 кадра в секунду, изображение будет восприниматься как непрерывное движение. 24 кадра в секунду — это именно то, чего ждет человек, включивший фильм. Сколько кадров в секунду может реально увидеть человеческий глаз?

Что такое FPS в играх — и на что влияет частота кадров в секунду

В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц или что максимальное количество кадров в секунду, которое может видеть человек, не превышает 60. Сколько кадров в секунду видит глаз человека? Почему на ТВ используют 24 кадра. А сколько кадров в секунду видите вы? 24 кадра в секунду — это именно то, чего ждет человек, включивший фильм. Однако к возможностям человеческого глаза это не имеет никакого отношения — в отдельных ситуациях наш глаз способен видеть 400 и более кадров в секунду. Сколько кадров в секунду может видеть человеческий глаз.

Сколько кадров видит человеческий глаз — распространенные мифы и какова правда?

Комментарии открыты: вы можете предложить идею для нового текста или просто обсудить всё, что связано с геймдевом. Этот термин зачастую используют, чтобы пояснить, насколько плавным получилось изображение в игре. Чем больше кадров в секунду выдаёт та или иная игра, тем плавнее получается изображение. Впрочем, «чем больше» не означает, что предела у этого значения нет. Оптимальной частотой кадров считается 60 FPS, хотя показатель в 30 FPS тоже не редкость — он обычно встречается в играх на консолях. Иногда говорят и про 120 FPS — настолько высокая частота обычно бывает в киберспортивных шутерах, где плавность изображения важна как нигде больше и порой на результат матча может повлиять пара лишних кадров. В видео, записанном специалистами компании NVIDIA, можно увидеть и показатель в 240 FPS, но это уже большая редкость и явление, которое можно встретить лишь в киберспорте — обычным игрокам добиваться таких значений нет никакого смысла На что влияет FPS в играх Как уже отмечалось выше, частота кадров в первую очередь влияет на то, насколько плавным выглядит изображение в игре. И ещё она влияет на то, насколько в целом комфортно играть, ведь если значение FPS опускается ниже 30 кадров в секунду, то человеческий мозг начинает воспринимать происходящее на экране монитора или телевизора как тормоза, лаги и другие недостатки, вызванные слабостью железа. Выходит, что именно счётчик FPS — это главный показатель производительности той или иной игры. Видео, наглядно демонстрирующее разницу между 30 FPS и 60 FPS в популярных играх При этом зачастую важнее именно стабильная производительность. Высокий показатель частоты кадров, который время от времени неожиданно падает до 35—45 кадров, игрок воспринимает хуже, чем стабильные 30 FPS.

Любой такой сбой воспринимается как лаг, ведь мозг настраивается на определённую кадровую частоту. Кадровая частота игры во многом зависит от того, на какой платформе она запущена. Так, на ПК в большинстве случаев единственное ограничение — мощность железа, которое может быть очень разным. Зачастую это вызывает дополнительные проблемы при оптимизации игры: сделать так, чтобы она работала одинаково на всех компьютерах, попросту невозможно — комбинаций железа слишком много. При создании версий для игровых приставок, где установлены фиксированные комплектующие, ситуация немного проще: оптимизировать игру приходится под тот или иной стандарт, в зависимости от конкретной консоли.

Новая технология пригодится в физике, биологии, химии, материаловедении и разработке эффективных фармацевтических препаратов.

SCARF работает путем создания «чирпирующего» ультракороткого лазерного импульса, который проходит через объект камеры.

Как правило, люди не могут различить слабые, короткие, яркие и длинные раздражители в течение десятых долей секунды. Но хотя человеческому глазу трудно различать световые вспышки длительностью менее 10 мс, мы можем воспринимать артефакты и движения невероятно быстро. Это будет зависеть от того, как воспринимаются различные формы движения: если вы сидите неподвижно и начинаете наблюдать, как вещи движутся перед вами, вы будете воспринимать это намного лучше, чем если бы вы делали это во время ходьбы, поскольку стимулы Они разные. Также стоит подумать о некоторых вещах, которые мы делаем во время игры; например, в игре типа «шутер» мы постоянно отслеживаем взаимосвязь между движением мыши и взглядом в петле восприятия двигательной обратной связи. Другими словами, когда мы перемещаем мышь, зрение уже знает, что экран будет двигаться, что позволяет нам быстрее реагировать. Поэтому во время игры мы постоянно обновляем представление об игровом мире с помощью визуальной информации.

Эксперты говорят, что мы увидим гораздо более плавную игру, когда у нас будет восприятие движения в большом масштабе, а не в определенной точке; Другими словами, когда мы играем, глядя на весь экран в целом, у нас будет лучшее ощущение плавности, чем если бы мы указывали на определенную часть экрана. Так сколько кадров в секунду видит человеческий глаз? Вопрос на миллион долларов, верно? С этим не согласны даже эксперты, и вот что они говорят о том, сколько FPS видит человеческий глаз: «Конечно, 60 Гц лучше, чем 30 Гц, явно лучше, и это утверждение, которое мы уже давно слышим от производителей оборудования. Поскольку мы можем воспринимать движение с более высокой скоростью, чем мерцающий источник света с частотой 60 Гц, уровень должен быть выше, но я не думаю, что он остается на определенном уровне. Я не знаю, 120 Гц это или 180 Гц. Проще говоря, точка, в которой люди замечают изменение плавности движущихся изображений, составляет около 90 Гц.

Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор. Но способен ли на это ваш монитор? Количество кадров в секунду выдает именно видеокарта — она источник изображения. Количество кадров, которое выдает видеокарта, может не совпадать с частотой обновления кадров на мониторе.

Мифы про FPS и зрение человека, в которые уже можно не верить

Одним из самых необычных и удивительных экспериментов можно по праву считать следующий: Когда группа испытуемых просматривала высокочастотное видео, то заметила лишний предмет на экране. Читайте также: Спектральная оптическая когерентная томография: принципы и возможности метода Ученые создавали группы людей. Предоставляли им видеоматериал, в котором присутствовали еле видимые дефектные кадры с изображением чего-то лишнего. Обычно это был летящий объект. После просмотра значительная часть говорила о том, что заметила мелькание в видео. Это поразило всех, так как фпс было на уровне 220. Небольшой опыт можно поставить самостоятельно дома и проверить способности зрительной системы. Для этого существует ряд видео с разной частотой кадров. После просмотра стоит записать наблюдения в этот момент.

Однако лучше избегать материала с 25 кадром. При создании шлемов виртуальной реальности разработчики столкнулись с проблемой. Выяснилось, что периферийное не различает детали, но имеет большую скорость. Поэтому нужно было менять значение в 30 и 60 герц, которые подходят для мониторов. После нескольких попыток выяснилось: для комфортного нахождения в шлеме это значение должно доходить до 90 Гц. Почему на ТВ используют 24 кадра Сегодня основным отраслевым стандартом является 24 FPS, что вполне устраивает современного зрителя. Однако он был выбран не по театральным причинам, а по экономическим соображениям. На этапе становления кинематографа не были выработаны рекомендации для частоты.

Но индустрия предпочла утвердить 24 FPS, поскольку это самая медленная частота, которая давала реалистичное видео и поддерживала оптимальный звук при воспроизведении. Больший уровень создатели фильмов не хотели применять из-за увеличения финансовых затрат. Допускаются и альтернативные частоты. Например, в картине «Хоббит» Питер Джексон впервые использовал 48 кадров, чем вызвал на себя гнев кинокритиков за гиперреалистичность видео.

Многочисленные переходные процессы могут не отражаться интенсивностью света.

Таким образом, возможность измерения другого оптического контраста, такого как фаза и поляризация, улучшит область применения этой методологии. В этом исследовании 4 фундаментальных оптических явления перечисленных ниже были отображены в режиме реального времени, и T-CUP успешно зарегистрировал пространственную фокусировку одного пикосекундного импульса. Луч пронесся по поверхности Расщепляющий Отражение Когда эта камера использовалась впервые, она побила мировой рекорд, записав событие с одним фемтосекундным лазерным импульсом в режиме реального времени. Она снимала 25 кадров каждые 400 фемтосекунд и детализировала интенсивность светового импульса, форму и угол наклона.

К сожалению, его внедрение слишком дорого обходится. Если для выпуска приемлемого материала на 24 FPS вам нужно делать рендеринг на 96 FPS, то вместо этого вы можете просто поднять фреймрейт, так что зачастую это не вариант для контента, который рендерится в реальном времени. Исключениями являются видеоигры, где заранее известна траектория движения объектов, так что можно рассчитать приблизительный motion blur , а также системы декларативной анимации вроде CSS Animations и, конечно, CGI-фильмы как у Pixar. Чтобы не путать их, мы используем Гц для частоты обновления и FPS для фреймрейта. Если вы задаётесь вопросом, почему на вашем ноутбуке так некрасиво выглядит воспроизведение дисков Blu-Ray, то часто причина в том, что фреймрейт неравномерно делится на частоту обновления экрана в противоположность им, DVD конвертируются перед передачей. Да, частота обновления и фреймрейт — не одно и то же. Согласно Википедии, «[.. Так что фреймрейт соответствует количеству отдельных кадров на экране, а частота обновления соответствует числу раз, когда изображение на экране обновляется или перерисовывается. В идеальном случае частота обновления и фреймрейт полностью синхронизированы, но в определённых ситуациях есть причины использовать частоту обновления в три раза выше фреймрейта, в зависимости от используемой проекционной системы. Новая проблема у каждого дисплея Кинопроекторы Многие думают, что во время работы кинопроекторы прокручивают плёнку перед источником света.

Но в таком случае мы бы наблюдали непрерывное размытое изображение. Вместо этого для отделения кадров друг от друга здесь используется затвор , как и в случае с кинокамерами. После отображения кадра затвор закрывается и свет не проходит до тех пор, пока затвор не откроется для следующего кадра, и процесс повторяется. Затвор кинопроектора в действии. Из Википедии. Однако это не полное описание. Эти затемнения между кадрами разрушат иллюзию. Для компенсации проекторы на самом деле закрывают затвор два или три раза на каждом кадре. Конечно, это кажется нелогичным — почему в результате добавления дополнительных мерцаний нам кажется, что их стало меньше? Задача в том, чтобы уменьшить период затемнения, который оказывает непропорциональный эффект на зрительную систему.

Порог слияния мерцания тесно связанный с инерцией зрительного восприятия описывает эффект от этих затемнений. Вся концепция в целом немного сложнее, но на практике вот как можно избежать мерцания: Использовать иной тип дисплея, где нет затемнения между кадрами, то есть он постоянно отображает кадр на экране. Применить постоянные, неизменяемые фазы затемнений с продолжительностью менее 16 мс Мерцающие ЭЛТ Мониторы и телевизоры ЭЛТ работают, направляя электроны на флуоресцентный экран, где содержится люминофор с низким временем послесвечения. Насколько мало время послесвечения? Настолько мало, что вы никогда не увидите полное изображение! Вместо этого в процессе электронного сканирования люминофор зажигается и теряет свою яркость менее чем за 50 микросекунд — это 0,05 миллискунды! Для сравнения, полный кадр на вашем смартфоне демонстрируется в течение 16,67 мс. Так что единственная причина, почему ЭЛТ вообще работает — это инерция зрительного восприятия. Из-за длительных тёмных промежутков между подсветками ЭЛТ часто кажутся мерцающими — особенно в системе PAL, которая работает на 50 Гц, в отличие от NTSC, работающей на 60 Гц, где уже вступает в действие порог слияния мерцания. Чтобы ещё более усложнить дело, глаз не воспринимает мерцание одинаково на каждом участке экрана.

На самом деле периферийное зрение, хотя и передаёт в мозг более размытое изображение, более чувствительно к яркости и обладает значительно меньшим временем отклика. Вероятно, это было очень полезно в древние времена для обнаружения диких животных, прыгающих сбоку, чтобы вас съесть, но это доставляет неудобства при просмотре фильмов по ЭЛТ с близкого расстояния или под странным углом. Размытые ЖК-дисплеи Жидкокристаллические дисплеи LCD , которые классифицируются как устройства выборки и хранения , на самом деле довольно удивительные, потому что у них вообще нет затемнений между кадрами. Текущее изображение непрерывно демонстрируется на нём, пока не поступит новое изображение. Позвольте повторить: На ЖК-дисплеях нет мерцания, вызванного обновлением экрана, независимо от частоты обновления. Но теперь вы думаете: «Погодите, я недавно выбирал телевизор, и каждый производитель рекламировал, чёрт побери, более высокую частоту обновления экрана! Зрительное размытие в движении Производители ЖК-дисплеев всё повышают и повышают частоту обновления из-за экранного или зрительного motion blur. Так и есть; не только камера способна записывать размытие в движении, но ваши глаза тоже могут! Прежде чем объяснить, как это происходит, вот две сносящие крышу демки , которые помогут вам почувствовать эффект нажмите на изображение. В первом эксперименте сфокусируйте взгляд на неподвижном летающем инопланетянине вверху — и вы будете чётко видеть белые линии.

А если сфокусировать взгляд на движущемся инопланетянине, то белые линии волшебным образом исчезают. С сайта Blur Busters: «Из-за движения ваших глаз вертикальные линии при каждом обновлении кадра размываются в более толстые линии, заполняя чёрные пустоты. Дисплеи с малым послесвечием такие как ЭЛТ или LightBoost устраняют подобный motion blur, так что этот тест выглядит иначе на таких дисплеях». На самом деле эффект отслеживания взглядом различных объектов никогда невозможно полностью предотвратить, и часто он является такой большой проблемой в кинематографе и продакшне, что есть специальные люди, чья единственная работа — предсказывать, что именно будет отслеживать взгляд зрителя в кадре, и гарантировать, что ничто другое ему не помешает.

Более того, разные рецепторы сетчатки глаза имеют разное восприятие и неравномерно распределены по глазу. Например, в силу эволюционных особенностей нашего глаза, периферическое зрение является более чувствительным к различным изменениям в окружении, но хуже различает цвета и объекты. Поэтому назвать определенное значение, отвечающее на поставленный вопрос, попросту невозможно. Надеюсь с этим вопросом покончено, идем дальше. Очень часто я слышу утверждение: человеческий глаз не способен увидеть больше 24 16 или любое другое число, в зависимости от степени заблуждения автора кадра в секунду! Откуда берутся все эти загадочные числа?

Самые распространенные в этом вопросе это числа 24 и 16. В самом первом абзаце я упомянул число 16, которое является необходимым минимумом для восприятия ряда кадров, как анимация. Это самое число было взято на заре кинематографа за основу. Тогда посчитали, что 16 кадров в секунду не будут вызывать дискомфорта у зрителя при просмотре фильмов и в таком случае затраты на пленку будут минимально возможными. Чуть позже это число переросло во всем вам известное 24, которое стандартизировала Американская Академия искусств, в далеком 1932 году. В общем, эти числа являются стандартами кинематографа и телевидения и не имеют ничего общего с максимально возможным человеческим восприятием. Сейчас, ныне популярная кинематографическая система IMAX показывает изображение в 48 кадров в секунду. Но почему то никто не говорит, что человек не видит больше 48 кадров. По своей сути это два абсолютно разных показателя, но, как показала практика, далеко не все это понимают. Количество кадров в секунду, оно же FPS Frames Per Second , это величина отображающая производительность вашего железа в определенных условиях.

А частота обновления монитора — это то, сколько кадров в секунду монитор способен выводить на экран. То есть если выработка вашего железа составляет 200 кадров в секунду. А частота обновления монитора 60Гц, то максимум вы увидите только 60 кадров из тех 200, которые выдает ваше железо. И на первый взгляд может показаться, что в частоте кадров выше частоты опроса монитора нет никакого смысла, но это не совсем так. Во-первых, в подавляющем своем большинстве, в играх синхронизация устройства вывода изображения монитор с устройством ввода мышь, клавиатура происходит только один раз за кадр. А это означает, что чем выше производительность железа в игре, тем более послушное и плавное управление вы будете ощущать.

Что такое FPS в играх — и на что влияет частота кадров в секунду

сколько кадров в секунду видит человек. Учёные рассуждают об одном из главных предметов споров среди геймеров. Сколько кадров в секунду видит человеческий глаз? Исследования, эксперименты и научные обоснования и комментарии о том, сколько же Гц видит глаз обычного человека, и отличаются ли геймеры от нас. Из-за этого, количество кадров, которые человек видит за одну секунду, может значительно различаться.

Какое количество кадров в секунду воспринимает человеческий глаз

Но вот вы включаете камеру, и она спрашивает вас, с какой частотой кадров вы хотите снимать видео. Подождите, частота кадров? Это имеет какое-то отношение к высокой четкости? Или 4K? И какой настройкой она должна обладать? Если вы только начинаете заниматься производством видео, у вас наверняка есть вопросы, касающиеся частоты кадров видео. Обязательно проверьте 12 простых советов, как сделать видео более профессиональным Мы в Wave. Хотя пользователям Wave. Сегодня мы постараемся, чтобы вы имели полное представление о том, что это такое и какая частота кадров видео лучше всего подходит для вашего проекта. Что такое частота кадров видео?

В техническом мире частота кадров видео называется кадры в секунду или FPS. Видео - это не просто одна непрерывная запись. Это отдельные изображения, которые затем быстро сменяют друг друга на экране, образуя движущееся изображение. FPS означает, сколько отдельных изображений используется в данную секунду. Чтобы легко получить его, посмотрите на флипбук. Традиционная частота кадров Итак, теперь мы знаем, что частота кадров означает количество раз, которое изображение мелькает на экране в течение одной секунды, чтобы создать иллюзию движения. Давайте немного углубимся в традиционную частоту кадров. Они также считаются стандартными частотами кадров. Частота кадров - это количество раз, которое изображение мелькает на экране в течение одной секунды, чтобы создать иллюзию движения.

Традиционная пленка, такая как классические фильмы в кинотеатре, снималась со скоростью 24 кадра в секунду. Телевидение, с другой стороны, снималось со скоростью 30 кадров в секунду. Если вы смотрите фильм, скажем, классику, такую как "Касабланка" или "Индиана Джонс", есть что-то другое в том, как выглядит фильм по сравнению с телевизионным шоу, не так ли? Это может быть что-то, что вы не можете точно описать, но вы знаете, что оно есть. Это различие заключается в частоте кадров. При 30 кадрах в секунду презентация выглядит немного более плавной.

Внутри находился светодиод с регулируемой частотой мерцания. Испытуемые должны были смотреть в прибор и говорить, когда свет мерцает, а когда нет. В ходе исследования выяснилось, что некоторые люди не замечали мерцание, когда лампочка мигала с частотой около 35 герц, в то время как другие различали вспышки со скоростью более 60 раз в секунду. По словам ученых, «скорость восприятия» может отличаться довольно сильно — разница может составить около 20 герц.

Реальность и экраны Когда вы смотрите футбольный матч с трибун или наблюдаете за ребенком, который едет на велосипеде по тротуару, ваши глаза — и ваш мозг — обрабатывают визуальные данные как один непрерывный поток информации. Но если вы смотрите фильм по телевизору, смотрите видео на YouTube на своем компьютере или даже играете в видеоигру, все немного по-другому. Мы привыкли смотреть видео или шоу, которые воспроизводятся с частотой от 24 до 30 кадров в секунду. Фильмы, снятые на пленку, снимаются с частотой 24 кадра в секунду. Это означает, что каждую секунду перед вашими глазами мелькают 24 изображения. Телевизоры и компьютеры в вашем доме, вероятно, имеют более высокую «частоту обновления», что влияет на то, что вы видите и как вы это видите. Частота обновления — это столько раз ваш монитор обновляет новые изображения каждую секунду. Если частота обновления вашего настольного монитора составляет 60 Гц , что является стандартным, это означает, что он обновляется 60 раз в секунду. Один кадр в секунду примерно соответствует 1 Гц. Когда вы используете компьютерный монитор с частотой обновления 60 Гц, ваш мозг обрабатывает свет от монитора как один непрерывный поток, а не как серию постоянных мерцающих огней. Более высокая частота обычно означает меньшее мерцание. Некоторые исследования показывают, что человеческий глаз может обнаруживать более высокие уровни так называемой «частоты мерцания», чем считалось ранее. В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц или что максимальное количество кадров в секунду, которое может видеть человек, не превышает 60. Почему вам нужно знать о частоте мерцания?

Если у человека наблюдается эпилепсия, начнется приступ. Выявлено, что человек способен воспринимать четко 120-150 кадров в одну секунду. Число может и увеличиваться, но восприятие будет ухудшаться. Это означает, что до 150 кадров человек распознает изображение идеально. Если они увеличиваются, это вызывает неприятные ощущения в глазах, дискомфорт. При этом считается, что при высокой смене кадров за одну секунду показывается большое число картинок, человеческий глаз распознает их плавно. Но даже если он не видит смену кадра, головной мозг все равно ее воспринимает. Научное обоснование Ученые доказали, что при 24-кратной частоте кадров человек воспринимает не только общую картинку на мониторе, но на подсознательном уровне отдельные кадры. Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека. Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более. Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо. В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения. А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду в действительности видит глаз Человеческое зрение — это не дискретная система, возможности которой можно описать простыми цифрами. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные. Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты. Сравнение 12, 18, 25 и 60 кадров в секунду на динамичном видео Чтобы проверить это, не нужно далеко ходить. Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом — на высоких или максимальных, чтобы получить меньше 30 FPS. Вы сразу заметите разницу: в первом случае объекты хоть и будут менее детальными, но движения — гораздо более плавными. Увидев разницу между 30, 60 и 100 FPS, можно наглядно убедиться, что человеческий глаз видит гораздо больше 24 кадров в секунду.

С каким разрешением лучше снимать видео и важна ли частота кадров

Основной вывод: частота кадров в секунду не может быть выше, чем число выдержки в секунду. Какое оптимальное количество кадров в секунду требуется в видеонаблюдении? 16 кадров в секунду - Если частота кадров видео меньше 10 кадров в секунду, зрители не смогут увидеть непрерывное движение. В цифровом кинематографе частота кадров также принята во всем мире равной 24 кадра в секунду как наиболее соответствующая эстетике профессионального художественного кино и не требующая неприемлемых объёмов данных. обо всем этом читайте в нашей статье. Если человеческийглазвидит только 24 кадра в секунду, то почему видео в 60 fps кажутся нам плавнее?

Сколько кадров в секунду видит человеческий глаз в кино и играх.

Ответы : Сколько fps видит человеческий глаз? Какова максимальная частота кадров в секунду, которую может увидеть человеческий глаз?
Сколько всё же кадров в секунду способен воспринимать человеческий глаз? Сколько кадров способен уловить человеческий глаз?
Сколько кадров в секунду видит человеческий глаз? Что такое FPS? Узнайте больше о том, сколько кадров может видеть человеческий глаз в секунду, можно ли протестировать человеческий FPS и многое другое.

Создана самая быстрая камера в мире, делающая 156,3 триллиона кадров в секунду

Частота кадров – это количество кадров (снимков), отснятых видеокамерой за секунду. Итак, сколько кадров в секунду может увидеть человеческий глаз? А сколько кадров в секунду видите вы? «Мы можем анализировать более 1000 кадров в секунду. Из-за этого, количество кадров, которые человек видит за одну секунду, может значительно различаться. Тем не менее, результат впечатляет: они зафиксировали движущийся свет со скоростью 10 трлн кадров в секунду.

С каким разрешением лучше снимать видео и важна ли частота кадров

Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Инженеры из Национального научно-исследовательского института Университета Квебека в Канаде создали сверхбыструю камеру, которая может делать снимки со скоростью до 156,3 триллиона кадров в секунду. Сколько кадров в секунду может видеть человек © All About Vision. 30 кадров в секунду? 60 кадров в секунду? Если вы когда-нибудь обсуждали частоту кадров, у когнитивных исследователей, с которыми мы разговаривали, есть для вас несколько сложных ответов.

Сколько кадров в секунду видит человеческий глаз

Сейчас перед цифровым кинематографом не стоит задача подражать технологиям прошлого, отныне перед ним открыты новые горизонты. После того, как Святой Грааль в виде пленки перестал быть ориентиром, цифровое кино несколько раз отправлялось по неверному пути, возвращалось назад и вновь искало нужное направление. Разрешение и человеческое зрение Лишь небольшое пространство нашей сетчатки содержит достаточное количество колбочек, чтобы обрабатывать изображение с максимальной детализацией. Этот участок называется центральной ямкой сетчатки глаза, который занимает менее одного процента ее поверхности и задействует более половины пространства зрительной коры головного мозга. Центральная ямка охватывает лишь два градуса зрительного поля — это примерно размер двух ногтей большого пальца на расстоянии вытянутой руки Когда вы смотрите на деталь, которая занимает ваше поле зрения более чем на два градуса, глаз самостоятельно сканирует изображение, а заполняет недостающие участки. Несмотря на то, что по краям сетчатки ваше зрение обладает гораздо меньшим разрешением, мозг все равно воспроизводит изображение, основываясь на данных, который он получил, когда глаз «просканировал» пространство. Мозг запоминает все детали, на которые вы смотрите даже вскользь, благодаря чему вы в режиме реального времени знаете, что происходит вокруг. Мозг постоянно дорабатывает изображение перед вашими глазами, и практически все, что вы видите, — это не настоящая проекция окружающего мира.

Алгоритм, благодаря которому мы видим, гораздо сложнее в человеческом организме, чем у камер, которые снимают изображение при заданных настройках фокусировки, количестве пикселей и частоте кадров. Именно этого ваши глаза двигаются, когда вы читаете этот текст: для того, чтобы в полной мере увидеть содержание другой области экрана, вам нужно остановиться и передвинуть глаза. Вы в курсе, где находится текст, как он расположен в пространстве, но чтобы узнать, что в нем написано, вам необходимо рассматривать фактически каждую деталь. Движущееся изображение — это иллюзия. Это обманка, которую наш мозг воспринимает как плавно движущееся изображение. Не стоит нарушать эту иллюзию, которая в действительности очень хрупка. Плотность пикселей — не единственный фактор, отвечающий за четкость изображения.

С математической точки зрения для достижения четкости хватило бы простого увеличения этого параметра, однако, преодолев определенный порог, можно заметить, что эффективность данного подхода заметно снижается. Гиперреализм и эффект мыльной оперы Со вторым недостатком повышенной частоты кадров пришлось столкнуться первым режиссерам, решившим поэкспериментировать с технологией. Например, такие фильмы, как «Хоббит» Питера Джексона, который снимали при 48 , а также «Долгий путь Билли Линна в перерыве футбольного матча» Энга Ли в 3D 120 , подверглись критике эффекта гиперреалистичности, слишком четкого и некинематографичного изображения. Здесь разрушается уже не иллюзия движущегося изображения, а ощущение мира грез, погружающего зрителя в историю, происходящую в иной реальности. Возможно, это даже более важно, чем яркие дисплеи и 4K. С другой стороны, ко всему можно привыкнуть. Может быть, нужно, чтобы детализация и частота кадров поднималась избирательно, только в определенных зонах?

Не забывайте, что лишь два градуса нашей сетчатки видят детализированное изображение, ведь даже когда мы смотрим фильм, наши глаза перемещается от одной точки к другой, сканируя пространство. Не стоит ли задуматься, как мы воспринимаем и обрабатываем изображение, которое создаем? Исследование восприятия изображения человеком сразу же дает понять, что наш мозг и так обрабатывает, сжимает и фильтрует большое количество информации. Сетчатка — часть центральной нервной системы, в наших глазах расположено около 150 миллионов рецепторов и всего лишь около миллиона оптических нервных волокон. Сетчатка постоянно перекодирует сжимает информацию, чтобы ее мог воспринять ограниченный запас оптических нервов. Мозг постоянно обрабатывает поток узконаправленного изображения с высокой детализацией из центральной ямки, совмещая его с широким зрительным полем с низкой детализацией, которое дополняет наша память и знания о мире, где мы живем. Если ваши инструменты восприятия реальности, зрение и мозг, постоянно фильтруют полученную информацию, словно алгоритмы сжатия качества видео, то почему не начать использовать избирательный подход к отображению только самых важных деталей в высоком разрешении?

Расстановка акцентов Вероятно, отсутствие четкой и ясной цели привело к развитию цифрового кино только в техническом направлении, наносящему вред как художественной ценности цифрового контента, так и его потребителю. Производители телевизоров, несмотря на недавний взлет и падение , решили не останавливаться и продолжили предлагать потребителю новые технологии — UHD, SUHD, HDR и многие другие загадочные аббревиатуры, сбивающие покупателя с толку и побуждающие его тратить деньги на инновации. Производители телевизоров придерживались этой стратегии задолго до появления общих для всех стандартов, в то время как производители контента оставались без технологического ориентира, а провайдеры цифрового ТВ стремительно запускали , несмотря на явную нехватку контента в. UHD, высокий динамический диапазон HDR , высокая частота кадров HFR , расширенная цветовая гамма — эту гремучую смесь инноваций мы наблюдаем на экранах, однако более аккуратно собранная комбинация новых технологий была бы самым оптимальным решением как для создателей контента, так и для его зрителей. То, что мы можем сделать , еще не значит, что это лучшее решение проблемы. На самом деле мы еще даже полностью не осознаем ее. Неожиданные факты Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино.

Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости. То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала. Изначальная скорость показа немого фильма составляла 16 кадров в секунду. Но при просмотре комедии, когда публика проявляла высокую активность, скорость увеличивали до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным.

В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз? Поговорим об этом. Дрожание Это одна из самых больших проблем, которой наш мозг не может собрать сменяющиеся кадры в плавное изображения. Что служит причиной дрожания? Дело в том, что и движущиеся объекты в некоторых кадрах выбиваются из общего потока информации слишком яркого изображения или повышенной контрастности по краям.

Поскольку у нас есть доступ только к нашему собственному субъективному опыту, мы наивно ожидаем, что все остальные воспринимают мир так же, как и мы. Данное исследование характеризует одно из таких различий. Некоторые люди действительно видят мир быстрее, чем другие.

Эта технология позволяет телефону записывать больше изображений за более короткое время. По мере развития технологий эксперты могут продолжать расширять диапазоны возможностей человеческого глаза. Как наше зрение сравнивается с зрением животных Возможно, вы слышали, как люди утверждают, что животные видят лучше людей. Оказывается, это не совсем так — острота зрения человека на самом деле лучше, чем у многих животных, особенно мелких. Таким образом, маловероятно, что ваша домашняя кошка на самом деле видит больше кадров в секунду, чем вы. Вы, вероятно, можете видеть детали намного лучше, чем ваша кошка, ваша собака или ваша золотая рыбка. Однако есть несколько видов животных с очень хорошей остротой зрения, которая даже лучше, чем у нас. Сюда входят некоторые хищные птицы, которые могут видеть до 140 кадров в секунду. Подведем итоги Ваши глаза и ваш мозг выполняют большую работу по обработке изображений — больше, чем вы можете себе представить. Возможно, вы не думаете о том, сколько кадров в секунду могут видеть ваши глаза, но ваш мозг использует все визуальные подсказки, чтобы помочь вам принимать решения. По мере того как ученые продолжают исследования, мы можем узнать больше о том, что наши глаза и мозг способны видеть и понимать. Источники: «Импульса» соблюдает строгие правила отбора источников и полагается на рецензируемые исследования, научно-исследовательские институты и медицинские ассоциации. Мы избегаем использования недостаточно экспертных ссылок. Al-Rahayfeh A, et al.

Это необходимое количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор. Но способен ли на это ваш монитор?

Мониторы с частотой 144, 240, 360 Гц: дают ли они реальные преимущества?

Сколько кадров в секунду видит человеческий глаз? Мозг большинства людей обучен воспринимать 24 полных кадра в секунду как качественное кино, а 50-60 полукадров (чересстрочные телесигналы) напоминают нам телеэфир и разрушают «эффект плёнки».
Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду - МК Новая технология сверхскоростной фотографии (T-CUP) со скоростью 10 триллионов кадров в секунду позволяет захватывать любое событие с интервалом кадра 100 фемтосекунд.
Сколько кадров в секунду (FPS) может видеть человеческий глаз | ITIGIC Для эффекта анимации достаточно уже 12–18 кадров в секунду в зависимости от личного восприятия человека.
«Сколько fps воспринимает человеческий глаз?» — Яндекс Кью Как было сказано выше, глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным и четким получится изображение.

До 60 fps: исследование наглядно показало возможности человеческого глаза

Сколько кадров видит человеческий глаз в секунду - 80 фото Итак, сколько кадров в секунду может увидеть человеческий глаз? Вы можете задаться вопросом, что происходит, если вы смотрите что-то с действительно высоким значением кадров в секунду.
Мониторы с частотой 144, 240, 360 Гц: дают ли они реальные преимущества? | Выяснилось, что некоторые люди способны видеть больше «изображений в секунду», что позволяет им лучше отслеживать быстродвижущиеся объекты, будь то теннисные мячи или противники в Fortnite.
«Элитные» спортсмены по-другому видят этот мир: они замечают больше кадров в секунду В статье подробно разбирается вопрос: сколько кадров в секунду видит человеческий глаз.

Ирландские исследовали обнаружили людей, видящих за секунду больше кадров

Получается, что нам нужно сделать — так это засветить изображение на сетчатку, а затем позволить глазу вместе с мозгом выполнить интерполяцию движения. Дополнительно: так в какой степени наш мозг выполняет интерполяцию, на самом деле? Никто не знает точно, но определённо есть много ситуаций, где мозг помогает создать финальное изображение того, что ему показывают. Взять хотя бы для примера этот тест на слепое пятно : оказывается, существует слепое пятно в том месте, где оптический нерв присоединяется к сетчатке. По идее, пятно должно быть чёрным, но на самом деле мозг заполняет его интерполированным изображением с окружающего пространства. Кадры и обновления экрана не смешиваются и не совпадают! Как было упомянуто ранее, существуют проблемы, если фреймрейт и частота обновления экрана не синхронизированы, то есть когда частота обновления не делится без остатка на фреймрейт. Проблема: разрыв экрана Что происходит, когда ваша игра или приложение начинают рисовать новый кадр на экране, а дисплей находится посередине цикла обновления?

Это буквально разрывает кадр на части: Вот что происходит за сценой. Затем монитор считывает этот фрейм и начинает его отображать здесь вам нужна двойная буферизация, чтобы всегда одно изображение отдавалось, а одно составлялось. Разрыв происходит, когда буфер, который в данный момент выводится на экран сверху вниз, заменяется следующим кадром, который выдаёт видеокарта. В результате получается, что верхняя часть вашего экрана получена из одного кадра, а нижняя часть — из другого. Примечание: если быть точным, разрыв экрана может произойти, даже если частота обновления и фреймрейт совпадают! У них должна совпадать и фаза, и частота. Разрыв экрана в действии.

Из Википедии Это явно не то, что нам нужно. К счастью, есть решение! Решение: Vsync Разрыв экрана можно устранить с помощью Vsync, сокращённо от «вертикальная синхронизация». Это аппаратная или программная функция, которая гарантирует, что разрыва не произойдёт — что ваше программное обеспечение может отрисовать новый кадр только тогда, когда закончено предыдущее обновление экрана. Vsync изменяет частоту изъятия кадров из буфера вышеупомянутого процесса, чтобы изображение никогда не изменялось посередине экрана. Следовательно, если новый кадр ещё не готов для отрисовки на следующем обновлении экрана, то экран просто возьмёт предыдущий кадр и заново отрисует его. К сожалению, это ведёт к следующей проблеме.

Новая проблема: джиттер Хотя наши кадры больше не разрываются, воспроизведение всё равно далеко не плавное. На этот раз причина в проблеме, которая настолько серьёзна, что каждая индустрия даёт ей свои названия: джаддер, джиттер , статтер, джанк или хитчинг, дрожание и сцепка. Давайте остановимся на термине «джиттер». Джиттер происходит, когда анимация воспроизводитеся на другой частоте кадров по сравнению с той, на которой её снимали или предполагали воспроизводить. К сожалению, именно это происходит при попытке отобразить, например, контент 24 FPS на экране, который обновляется 60 раз в секунду. Время от времени, поскольку 60 не делится на 24 без остатка, приходится один кадр показывать дважды если не использовать более продвинутые преобразования , что портит плавные эффекты, такие как панорамирование камеры. В играх и на веб-сайтах с большим количеством анимации это даже более заметно.

Многие не могут воспроизводить анимацию на постоянном, делящемся без остатка фреймрейте. Вместо этого частота смены кадров у них сильно изменяется по разным причинам, таким как независимая друг от друга работа отдельных графических слоёв, обработка ввода пользовательских данных и так далее. Вас это может шокировать, но анимация с максимальной частотой 30 FPS выглядит гораздо, гораздо лучше, чем та же анимация с частотой, которая изменяется от 40 до 50 FPS. Необязательно мне верить на слово; посмотрите своими глазами. Вот эффектная демонстрация микроджиттера микростаттера. Борьба с джиттером При преобразовании: «телекинопроектор» « Телекинопроектор » — метод преобразования изображения на киноплёнке в видеосигнал. Дорогие профессиональные конвертеры вроде тех, что используются на телевидении, осущестьвляют эту операцию в основном с помощью процесса, который называется управление вектором движения motion vector steering.

Он способен создавать очень убедительные новые кадры для заполнения промежутков. В то же время по-прежнему широко используются два других метода. Так что если вы когда-нибудь гадали, почему «Охотники за привидениями» в Европе на пару минут короче, то вот ответ. Хотя метод работает на удивление хорошо для видео, он ужасно отражается на звуке. Почти на полтона хуже. Возьмём реальный пример крупного провала. Но поскольку Blu-Ray идёт на 24 FPS, им пришлось выполнять обратное преобразование видео, так что они снова его замедлили.

Конечно, с самого начала плохой идеей было выполнять такое двойное преобразование, из-за потерь, но что ещё хуже, после замедления видео для соответствия частоте кадров Blu-Ray они забыли изменить обратно тон на звуковой дорожке, так что все актёры в фильме внезапно стали звучать сверхдепрессивно, разговаривая на полтона ниже.

Исследование было опубликовано в Nature Communications. Сообщается, что новая камера может фиксировать события, происходящие в пределах фемтосекунд — квадриллионных долей секунды. В одной секунде их примерно столько же, сколько секунд в 32 миллионах лет. Она может фиксировать, например, ударные волны, проходящие через материю или живые клетки.

Съемка сверхбыстрых явлений поможет в физике, биологии, химии, материаловедении и инженерии.

Она может отвлекать, если будете воспринимать частоту мерцания, а не единый непрерывный поток света и изображений. Итак, сколько кадров в секунду может увидеть человеческий глаз? Вы можете задаться вопросом, что происходит, если вы смотрите что-то с действительно высоким значением кадров в секунду. Вы действительно увидите все те кадры, которые мелькают? В конце концов, ваш глаз не движется со скоростью 30 изображений в секунду.

Короткий ответ заключается в том, что вы, возможно, не сможете сознательно регистрировать эти кадры, но ваши глаза и мозг могут их осознавать. Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел. Некоторые исследования показывают, что ваш мозг на самом деле может распознавать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы исследования 2014 года из Массачусетского технологического института обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — это очень высокая скорость обработки. Это особенно быстро по сравнению с принятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду.

Есть ли тесты, сколько кадров в секунду видит человеческий глаз? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят дать ответы, чтобы увидеть, что они смогли обнаружить. Именно это сделали исследователи в исследовании 2014 года , чтобы определить, что мозг может обрабатывать изображение, которое глаз видел только в течение 13 миллисекунд.

Разработчики дают следующее упрощенное объяснение: «Обычные высокоскоростные камеры делают последовательно снимок за снимков.

Новая же технология базируется на инновационном алгоритме, когда в одном кадре делается несколько кодированных снимков. В дальнейшем они разделяются на отдельные изображения, из которых можно получить видеоряд. Коротко говоря, метод подразумевает экспонирование снимаемого процесса например, химической реакции светом в виде лазерных вспышек, где каждой вспышке присвоен уникальный код. Объект отражает вспышки света, которые складываются в один кадр.

Однако потом их можно разделить в последовательность, используя декодирующий ключ».

Похожие новости:

Оцените статью
Добавить комментарий