Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Теория струн, или Теория всего
Вскоре обнаружилось, что эта формула позволяет описать огромное количество данных, накопленных при изучении особенностей сильного взаимодействия. Это был лишь первый кусочек пазла, который еще предстояло сложить другим. Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике? К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые. Было решено, что длина струн настолько мала, что их с натяжкой можно рассматривать как точки, а значит, для фундаментальной физики ничего не изменилось. Так возникло понятие «квантовая струна» — под ним подразумевается бесконечно тонкие одномерные объекты длиной в 10—35 м, колебания которых воспроизводят все многообразие элементарных частиц.
Это была настоящая революция в мире физики, так как все ранее открытые «ингредиенты Вселенной» электроны, протоны, нейтроны и пр. Струны более массивных частиц совершают более интенсивные колебания, а струны более легких частиц колеблются менее интенсивно. В конечном итоге колебания на определенной частоте определяют свойства струн: массу и электрический заряд, что позволяет отнести их к определенной разновидности фундаментальных частиц, будь то кварк, фотон, глюон и др. Уровни строения мира. Макроскопический — вещество. Атомный — протоны, нейтроны и электроны.
Субатомный — электрон.
Изначально была мысль, что устройство этих измерений будет некоторым образом следовать из формул, которые у нас есть. Но вывести эти свойства нам пока не удалось.
Более того, есть определенная убежденность, что и не удастся. То есть в каком-то смысле свободные параметры Стандартной модели превращаются в свободу выбора геометрии дополнительных измерений. И эта свобода выбора может оказаться фундаментальным свойством теории струн.
Двумерная проекция трехмерного многообразия Калаби-Яу Эта проекция дает представление о том, как сложно устроены дополнительные измерения. Что было дальше? Почти с самого начала ученые воспринимали всерьез только одну версию теории струн — суперсимметричную то есть теорию суперструн — прим.
Она включала в себя не только идеи, заложенные в оригинальных работах 1960-1970 годов, но и позволяла описывать частицы материи. Это, конечно, усложнило уравнения, но позволило создать теорию, которая не только объединила гравитацию и квантовую механику, но и добавила в эту смесь материю. Ведь всякая разумная теория должна включать в себя материю.
Есть расхожее мнение, что теорию струн невозможно проверить экспериментально. Например, определить форму дополнительных измерений. Насколько верно это утверждение?
Ответ на первую часть вашего вопроса довольно прост: экспериментальная проверка теории струн возможна. Просто у нас пока нет достаточно мощных ускорителей. Ведь если столкнуть частицы с достаточно высокой энергией планковской энергией, если быть точным, то есть порядка 1019 гигаэлектронвольт , то картина рассеивания будет отличаться от той, которую предсказывают существующие методы.
То есть здесь нет такого, что теорию невозможно проверить. В теории — можно, просто очень сложно. Здесь может помочь астрофизика?
В физике элементарных частиц она, случается, помогает. Конечно, может. Некоторое время назад, например, мы с коллегами написали работу, в которой — при определенных предположениях такие предположения нужны, чтобы можно было что-то посчитать — как уже говорилось, какие-то детали теории нам, вообще говоря, неизвестны — оказывалось, что в реликтовом излучении должен быть своего рода «отпечаток».
Его не нашли. Я бы и рад сказать, что теория струн неверна, однако отсутствие предсказанного нами рисунка означает только то, что неверны наши технические предпосылки. И это снова возвращает нас к тому, что с точки зрения математики мы пока понимаем теорию не в полной мере и не обладаем оборудованием для проверки теории без каких-либо дополнительных предположений.
Кадр из сериала «Теория большого взрыва» Шелдон Купер, один из главных героев сериала «Теория большого взрыва», является специалистом по теории струн Зачастую разные ученые под теорией струн могут понимать разные вещи. Верно ли, что за этой вывеской скрывается несколько теорий? Я прекрасно понимаю, о чем вы говорите, но я бы так не сказал.
Я бы сформулировал это по-другому: теория струн — это единый теоретический инструмент, позволяющий формулировать модели того, как Вселенная в принципе может работать. При этом какого-либо критерия отбора модели, имеющей отношение к нашей конкретной Вселенной, у нас нет. Есть идея, что так получилось, потому что каждая из этих моделей в некотором смысле реальна — просто она описывает какую-то другую Вселенную, где-то там, далеко.
Такая вот радикальная интерпретация наших неудач. Применительно к теории струн регулярно вспоминают теорию Янга-Миллса с ней связан один из вопросов , за решение которых Математический институт Клэя обещал миллион долларов. Расскажите, что это такое?
В 50-е годы прошлого века ученые обнаружили тогда без участия идей из теории струн , что уравнения для описания сильного и слабого взаимодействия в квантовой механике можно записать в особой симметричной форме. Симметрии, о которых идет речь, напоминают симметрии снежинки — если ее поворачивать на некоторый угол, то она переходит сама в себя. Так же и эти уравнения после определенного «поворота» оказывались такими же.
Такой подход оказался очень удобным, и физикам удалось много чего посчитать с его помощью. Сами Янг, Миллс и их последователи смогли заложить единую и очень изящную с математической точки зрения основу для Стандартной модели. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений.
То есть пойди история теоретической физики немного по-другому вполне возможно, так и произошло где-нибудь на другой планете или в другой Вселенной , теория Янга-Миллса была бы обычным следствием теории струн. То есть этот факт можно рассматривать как теоретическое а не экспериментальное подтверждение теории струн? В некотором смысле — да.
В такую игру с теорией струн можно играть достаточно долго: из теории струн естественным образом вытекает теория Янга-Миллса, разного рода дискретные симметрии, играющие важную роль в квантовой механике. Теория струн также позволяет объяснить, почему элементарные частицы объединяются в семейство — например, фермионы и бозоны. То есть многое из того, что приходилось добавлять в уравнения вручную, исходя из экспериментальных соображений, в теории струн возникает само собой.
Это не является, конечно, доказательством истинности теории, но с математической точки зрения означает, что теория включает в себя все, что мы знали до сих пор. У квантовой механики есть множество интерпретаций — копенгагенская, многомировая, теория квантовой информации и прочие. У них имеется общий математический аппарат, однако они кардинально различаются в описании того, что представляет собой реальность.
Есть ли такие же интерпретации у теории струн? Во-первых и это, конечно, тема для совершенно отдельного и большого разговора, совсем не связанного с темой нашей беседы , я бы не согласился с первой частью вашего утверждения. Различные интерпретации квантовой механики различаются не только на уровне интерпретации, но и на уровне механики, которую они используют.
Точнее, аккуратно определяя квантовую механику в рамках той или иной интерпретации, вы обнаружите, что эти интерпретации либо некорректно определены, либо дают разные теории. Они могут отличаться как предсказаниями, так и в онтологическом смысле — то есть они расходятся в том, что реально, а что — нет. Например, копенгагенская интерпретация не полна — она не говорит, что происходит во время так называемого коллапса волновой функции, вызванного наблюдением.
Многомировая интерпретация и теория де Бройля-Бома дают различные уравнения для описания квантового мира. Поскольку теория струн использует квантовую механику, то, с одной стороны, последняя никак не меняется. С другой стороны, если в квантовой механике есть какие-то вопросы, которые нужно интерпретировать, то они есть и в теории струн.
Все эти многомировые и прочие вещи тут присутствуют в полной мере. Сама же теория при этом никаких дополнительных факторов, требующих интерпретации, не привносит. То есть мы имеем дело с квантовомеханическими вопросами и только с ними.
Теория всего - гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия сильное, слабое, электромагнитное и гравитационное. Первые три взаимодействия описываются в настоящий момент квантовой механикой, последнее - теорией относительности С другой стороны, в теории струн есть эффект, называемый двойственностью. Его, если угодно, можно считать двоюродным братом вопроса интерпретации.
Дело в том, что в теории одна и та же физическая ситуация допускает несколько математических описаний математических интерпретаций, если угодно.
Не "Как? Но ведь "Почему? А началось все с одного служащего патентного бюро который придумал теорию относительности. Через "физический вакуум" каким то невообразимым способом распространяются поля и волны... Свет почему то имеет постоянную скорость независимо от источника, наблюдателя... При этом идея того что вакуум ни хрена не пуст отрицается и даже высмеивается. И вот теперь струны...
Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100 , вероятнее — около 10500; не исключено, что их вообще бесконечное число [58]. В течение 2005 года неоднократно высказывались предположения [59] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа [60] : человек существует именно в такой Вселенной, в которой его существование возможно. Вычислительные проблемы С математической точки зрения ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений [61]. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Данный результат, по всей видимости, заставит пересмотреть внешние параметры струнных теорий [63] [64] [65]. Текущие исследования Изучение свойств чёрных дыр В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр [66] , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход [2]. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран , открытых во время второй суперструнной революции. Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67]. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Данный подход впервые использован в работах Габриэле Венециано [68] , который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля , индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонное поле [69] [70] , кванты которого, в отличие, например, от электромагнитного поля , не являются безмассовыми , поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной [71]. Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель.
Что такое теория струн? Простой обзор
Оказалось, что теория струн замечательно может свести все четыре фундаментальных взаимодействия Вселенной к одному — колебанию одномерной струны с соответствующим переносом энергии. Теория струн в принципе может нам это объяснить, и вывести параметры элементарных частиц и их взаимодействий через фундаментальные физические константы типа скорости света или постоянной Планка. Теория струн, или Теория всего.
Теория струн: простое объяснение неоднозначной идеи
Физики решили эту загадку, рассматривая эти частицы как «точку» в нашем трехмерном мире. В сочетании с четвертым измерением времени они прослеживают «мировую линию». Более того, у этих точек есть квантовые состояния, которые мы называем массой, зарядом и т.
И я уже не говорю о том, как сильно будет болеть его плоский мозг, пытаясь представить трехмерное изображение. А сейчас попытайтесь представить, что в спокойную двуразмерную жизнь Федора и Вадима резко врывается некий 3D-объект, пересекающий их плоскость. Каким образом вы увидите это со стороны? Двумерные проекции сразу же изменятся и это будет похоже на брокколи в МРТ: Что в этот момент будет с нашими героями? Сказать, что они очень удивятся такому развитию событий, ничего не сказать.
Такого они даже представить себе не смогут. Для них везде начнут появляться отрезки, которые будут резко менять свою длину и положение. Вычислить длину или координаты этих объектов в двумерном мире будет просто невозможно. Надеюсь, теперь вы немного въехали в то, что я пытаюсь вам здесь втереть. Мы живем в трехмерном мире и видим все объекты двумерными. Лишь тот факт, что они или мы перемещаемся в пространстве, позволяет нам говорить о том, что у всего есть объем. А теперь представьте, что в наш мир вторглось какое-то пятимерное существо.
Не ломайте голову, все равно у вас ничего не получится. Вы будете видеть его таким же двумерным, но с очень и очень странными свойствами. Потому что вместе с его перемещением в пространстве и времени вы не только обнаружите его объем, но и другие свойства, которые, плюс ко всему, будут постоянно меняться. Сейчас вернемся к теории струн и попробуем вообразить себе объект, имеющий 10 измерений. Шучу, не будем мы это делать. Потому что, думаю, уже и так всем понятно, что это бессмысленно и бесполезно. Этот объект по сути должен существовать везде и нигде, всегда и никогда.
Наш мозг попросту не способен этого представить. Нечто подобное было описано в одном псевдонаучном фантастическом фильме под названием «Господин Никто». Там также затрагивается теория струн, и в очень киношной форме представляется то, каково это, жить сразу во всех десяти измерениях. В общем и целом, кино нудное, местами непонятное и не для всех. Но для базового, немного упрощенного и приукрашенного ознакомления с теорией струн сойдет. Все же знакомы со схематическими изображениями, на которых массивные небесные тела искривляют пространство вокруг себя под действием гравитации? Так вот искривляется не только пространство, но и время.
Это сильно влияет на то, как идет время в космосе , можете почитать. Но сейчас не об этом. Сейчас вопрос стоит в том, куда именно гравитация искривляет пространство-время? Ответа на этот вопрос мы дать не можем, так как ни одним из существующих измерений описать этот процесс невозможно. Время С трехмерным пространством более ли менее разобрались, но не будем забывать и про время — четвертое измерение. Ведь нам же мало знать, «где». Для жизни в нашем мире обязательно нужно еще и «когда».
Так как время — это тоже координата, то всю временную линию можно описать как луч. Вспоминайте школьный курс математики, что такое луч? Это линия, имеющая начало, но не имеющая конца. Время движется только вперед, и никак иначе. Реально лишь настоящее, и ни будущего, ни прошлого по сути вообще не существует. Однако теория относительности может с этим поспорить. Она говорит о том, что время — такое же измерение, как и остальные три.
А значит, все, что было, есть и будет, одинаково реально. Все относительно и зависит лишь от нашего восприятия. С точки зрения времени, человечество выглядит как-то так: Однако мы видим лишь определенную проекцию времени, небольшой его отрезок. И в каждый отдельный момент он будет различным. Чувствуете, где-то мы уже видели один и тот же объект по-разному в зависимости от его положения? То самое брокколи в МРТ.
Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает. Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics , теория струн все же, имеет право на существование. Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях.
За этим открытием стоит математика, теория основана на простых предположениях и расчетах. Элементарные частицы настолько малы, что имеют размерность Планка, которая составляет 10-33, их невозможно даже наблюдать. Физики решили эту загадку, рассматривая эти частицы как «точку» в нашем трехмерном мире.
Краткая история теории струн
Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на
Что такое теория струн простыми словами (насколько это возможно)?
Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики. Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну. 1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория.
Что такое теория струн? Простой обзор
Теория струн кратко и понятно. Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Антропный принцип в теории струн. Почта Мой МирОдноклассникиВКонтакте Игры Знакомства Новости Поиск Облако VK Combo Все проектыВсе проекты. Новости науки, высокие технологии и научные открытия.
Теория суперструн популярным языком для чайников
Часто новые теоретические конструкции проходят стадию неопределённости, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются см. Поэтому и в случае теории струн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин. Фальсифицируемость и проблема ландшафта В 2003 году выяснилось [57] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100 , вероятнее — около 10500; не исключено, что их вообще бесконечное число [58]. В течение 2005 года неоднократно высказывались предположения [59] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа [60] : человек существует именно в такой Вселенной, в которой его существование возможно. Вычислительные проблемы С математической точки зрения ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений [61]. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет.
Данный результат, по всей видимости, заставит пересмотреть внешние параметры струнных теорий [63] [64] [65]. Текущие исследования Изучение свойств чёрных дыр В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр [66] , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход [2]. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран , открытых во время второй суперструнной революции. Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67].
По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг.
Подписывайтесь на наш телеграм-канал по биологии и канал про животных. Теория струн Стандартная модель представляет фундаментальные частицы как точечные объекты. Теория струн описывает их как протяженные объекты — некие струны, подобные тончайшим волокнам или лентам. Их размеры — масштаба планковской длины, то есть порядка 10-35 м. Все струны одинаковы, а все наблюдаемые частицы и кванты полей суть различные типы колебаний этих струн. Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована. Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны.
Причем возможны такие превращения: Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов; Отрезок дает начало петле, если часть его «закольцуется»; Петля разрывается и становится открытой струной; Два отрезка обмениваются сегментами. Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство. Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения.
Однако, в 1926 году на сцену вышел великий Вернер Гейзенберг со своим принципом неопределенности и все изменилось в одночасье. Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн.
Космический эксперимент поставил под сомнение теорию струн
При этом идея того что вакуум ни хрена не пуст отрицается и даже высмеивается. И вот теперь струны... Вернее энергия первична, а материя вторична. Десять измерений которые куда то мелко свернуты... Ребята, по моему ваша математика окончательно оторвалась от реальности. Пора вводить новый термин: научная сингулярность. Это когда вычисления зашли так далеко что окончательно потеряли какую бы то ни было связь с реальностью, но ученые остановиться не могут.
Интересно, что существует несколько потенциальных теорий, объединяющих два столпа физики, самой известной из которых является теория струн. Мир согласно теории струн Согласно теории струн, если бы мы заглянули внутрь любой фундаментальной частицы, например, такой как электрон, мы бы обнаружили там крошечную вибрирующую струну энергии одномерный объект. В теории струн фундаментальные частицы можно рассматривать как энергетические колебания. Рисунок, изображающий теорию струн. Более того, теория струн предсказывает существование одиннадцати измерений. Причина, по которой мы не видим эти измерения в повседневной жизни, заключается в том, что они слишком малы, чтобы их обнаружить. Тем не менее, дополнительные измерения играют жизненно важную роль. Конфигурация размеров определяет, как вибрирует струна и, следовательно, какая частица образуется.
Поэтому во многих вариантах фигурировало десять измерений, а потом пришлось ввести еще одно, чтобы объединить все пять теорий струн в единую М-теорию, где заглавная М означает «мистическая, материнская, мембранная, матричная». Сделал это обобщение американский физик-теоретик Эдвард Виттен. Он, к слову, до сих пор жив и здоров, как и начавший собирать этот научный пазл Габриеле Венециано. Это невероятное разнообразие идей о математике и физике, — восторженно пишет о своем детище Эдвард Виттен. Гравитация, о которой догадался еще Ньютон, никак не укладывалась в стандартную модель физики. Разбирая мир до микрочастиц, ученым приходилось делать вид, будто нет никакой силы притяжения между звездами, галактиками, планетами и Солнцем. Теория струн стала вмиг популярна, потому что она выступила объединяющим мостиком между квантовой механикой и общей теорией относительности, которые имели противоречия и никак не могли ужиться друг с другом. Объяснить все и сразу — это была давняя мечта Эйнштейна и многих других ученых, осознававших, что существующие теории не решают всех загадок макро- и микромира. Некоторые даже думали, что все законы физики возможно объяснить одним уравнением — осталось лишь догадаться, что это за формула. Почти приблизились к этому Джоэль Шерк и Джон Шварц. Позже они с обидой говорили, что теория струн изначально потерпела неудачу потому, что физики недооценили ее масштаб. В чем ценность теории струн? Что такое теория струн простым языком? Если взглянуть на нее в целом и не вдаваться в детали, это попытка посмотреть на все, что мы знаем и видим, под другим ракурсом. До появления теории струн не было глобальных попыток пересмотреть уже устоявшиеся, общепринятые нормы. Физики стали все чаще предполагать, что микрочастицы действительно могут быть в миллиарды раз меньше электронов и пусть даже они не похожи на струны. Мы задумались над существованием других измерений, о чем, правда, еще в 1919-м году писал немец Теодор Калуца, а Альберт Эйнштейн считал его предположение заслуживающим внимания. Далее эту идею развил шведский ученый Оскар Клейн, который представил, что невидимое для нас измерение может быть свернуто в микромасштабе. По сути, именно эта идея и легла в основу теории струн. В общем, физики стали смотреть на постулаты немного иначе. Пусть даже эта работа не будет напрямую связана с теорией струн. Кроме того, не забывайте, что в рамках теории струн действительно удалось увязать объяснения для всех явлений, процессов и объектов, наблюдаемых во вселенной. И пусть в ней еще много нестыковок, это дорогого стоит. Сейчас ученые пытаются усовершенствовать теорию, из-за чего базовая теория струн получила несколько ответвлений. И пусть популярность этой в каком-то смысле революционной теории снижается, очевидно, что ее нельзя назвать провальной. Примечания и ссылки Заметки Характер гетеротического. Гетеротик — это веревочный гибрид. М-теория — это не только теория струн, но и теория бран объектов, объем вселенной которых имеет более одного измерения. Эдвард Виттен : Это означает, что не существует классического способа получить пространство де Ситтера из теории струн или М-теории. Рекомендации Питер Войт. Даже не неправильно: неудача теории струн и поиск единства в физическом законе.
Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию. Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами. Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов. Дискуссии и перспективы развития будущих теорий Дискуссии и дебаты вокруг квантовой теории струн и ее альтернативных подходов продолжаются в научном сообществе. Ученые исследуют различные аспекты и проблемы теории струн, а также альтернативные модели и гипотезы. Будущие теории могут включать в себя комбинацию различных подходов и идей, а также новые математические и физические концепции. Они могут предложить новые предсказания, которые могут быть проверены экспериментально и привести к новым открытиям и пониманию фундаментальных взаимодействий и структуры Вселенной. Заключение Квантовая теория струн представляет собой уникальный и амбициозный подход к объединению гравитации и квантовой механики. Она предлагает новый математический формализм и концепции, которые могут пролить свет на фундаментальные взаимодействия и структуру Вселенной. Несмотря на свою сложность и ограничения, квантовая теория струн имеет большой потенциал для дальнейших исследований и развития. Она может помочь нам лучше понять природу гравитации, создать единое поле физики элементарных частиц и раскрыть новые аспекты Вселенной. Однако, критика и альтернативные подходы также играют важную роль в развитии науки. Альтернативные модели и гипотезы предлагают другие пути и идеи для объединения гравитации и квантовой механики, и могут привести к новым открытиям и пониманию фундаментальных взаимодействий. В целом, квантовая теория струн и ее альтернативные подходы представляют собой захватывающую область исследований, которая продолжает привлекать внимание ученых и исследователей. Будущие исследования и эксперименты могут привести к новым откры Квантовая теория струн обновлено: 28 августа, 2023 автором: Научные Статьи. Ру Нашли ошибку? Сертифицированный копирайтер , автор текстов для публичных выступлений и презентаций. Количество оценок: 0 Поставьте вашу оценку Сожалеем, что вы поставили низкую оценку! Позвольте нам стать лучше!
Космический эксперимент поставил под сомнение теорию струн
Что такое теория струн? Простой обзор | Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано[7], связанных со струнными моделями строения адронов. |
Теория струн и квантовая механика | Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну. |
Что такое Теория струн и существует ли 10-ое измерение
Теория струн. Возникновение теории, ее приложения | Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. |
Вы точно человек? | В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. |
Космический эксперимент поставил под сомнение теорию струн - Российская газета | Новости науки, высокие технологии и научные открытия. |
Квантовая теория струн
Дамир Зарипов Профи 683 , закрыт 6 лет назад Арсений Енин Мыслитель 5536 10 лет назад Теория струн — направление теоретической физики, изучающее динамику и взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени.
Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него. Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы.
Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы. Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц скажем, нейтрон и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками.
Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще. Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Иллюстрация струны Однако крошечные струны в теории струн не дают музыкальных нот.
Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам. Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах.
Если теория струн верна она все еще не доказана , все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн. Дополнительное измерение На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы. Теория струн требует от нас принять существование дополнительного измерения во вселенной.
Суперсимметрия Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн.
Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны.
На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство. Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования; Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы; Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.
Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице.
Вы точно человек?
Теория струн кратко и понятно. Видео от пользователя. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. Теория струн воспринималась как теория ядерного взаимодействия (в ядре атома удерживаются нейтроны и протоны). Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее.