Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии.
#термоядерный синтез
Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Физики из Helion Energy разогрели плазму до 100 млн градусов — температура, считающаяся оптимальной для термоядерной реакции. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта.
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
Термин «токамак» придумал советский физик Игорь Головин еще в конце 1950-х годов. Сейчас экспериментальный усовершенствованный сверхпроводящий токамак называют «искусственным солнцем». В своей работе он имитирует реакцию ядерного синтеза, питающую настоящее Солнце. Первый пуск EAST состоялся в 2006 году. Установку построили на основе модифицированного реактора HT-7. Радиус ее внешнего корпуса составляет 1,7 метра. В мае 2021 года ученым удалось установить первый рекорд. Тогда реактор нагрелся до 120 миллионов градусов по Цельсию, но проработал всего 101 секунду 1,6 минуты. Ученые считают, что с помощью токамака удастся получить источник неограниченной чистой энергии, так как водород и дейтерий в изобилии присутствуют на Земле. Но для этого необходимо добиться того, чтобы установка могла стабильно работать при высокой температуре длительное время.
Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду. Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов.
Там активно работает молодая команда", - рассказал он. Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его. Ранее сообщалось, что для создания реактивного двигателя достаточно температуры плазмы в 100 тыс. По замыслу ученых, в перспективе термоядерная установка позволит создать двигатели мегаваттной мощности, что значительно превышает расчетные показатели разрабатываемых ядерных электрореактивных двигателей и позволяет использовать ее для межпланетных перелетов.
Чтобы добиться эффекта "зажигания", команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза. Однако за год ученые так и не смогли повторить эксперимент.
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.
Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее. Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились.
Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией.
В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые, и выделяя огромное количество энергии по пути.
На Солнце этот процесс приводится в действие силой гравитации.
В готовом виде токамак ИТЭР будет представлять собой 60-метровое сооружение массой 23 000 т. Знаете, почему термоядерный реактор не могут построить уже 50 лет? Hi-Tech Mail.
Исследователи классифицирует ее как воспламенение англ. Ignition — самоподдерживающую реакцию термоядерного синтеза, при которой выделяется больше энергии, чем тратится на ее поддержание. Чтобы добиться безубыточной реакции синтеза, физики внесли изменения в ход эксперимента, основываясь на результатах предыдущих исследований. Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет.
Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени. Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем. В NIF используется инерциальный управляемый термоядерный синтез ICF , когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров.
Американские физики повторно добились термоядерного зажигания
Для этих целей в рамках проекта ИТЭР на юге Франции с 2010 года строят самый большой в мире реактор типа токамак. В потенциале человечество может получить практически неисчерпаемый источник энергии, однако на сегодня уровень развития науки и техники не позволяет применять управляемый термоядерный синтез в промышленных масштабах. Что умеют программные роботы В прошлом году Ливерморская национальная лаборатория при Минэнерго США в ходе эксперимента по управляемому термоядерному синтезу облучила капсулу с изотопами водорода, дейтерия и трития, самым большим в мире лазером. Министерство энергетики объявило о «крупном научном прорыве, на достижение которого ушли десятки лет и который откроет путь к прогрессу в национальной безопасности и будущем чистой энергии». Через полгода ученые-ядерщики закрепили свой успех и подтвердили, что вновь достигли положительной по затратам энергии термоядерной реакции синтеза, хотя точных данных пока не огласили. Как сообщает Reuters, результаты будут обнародованы на пресс-конференции и опубликованы в научных журналах.
На основе найденных величин можно будет рассчитать кинетику ядерных превращений для расчета коэффициента полезного действия КПД конкретной энергетической термоядерной или гибридной ядерной установки. Результаты исследования помогут развитию энергоэффективной термоядерной энергетики.
Интересно и то, что соглашение об ИТЭР состоит из двух частей. Первая: о создании самого проекта и его реализации, а вторая — как страны участники будут делить интеллектуальную собственность, которая создается. Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов. Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора. Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами. А вот ИТЭР — как ледокол: идет, и об его крепкий корпус все мелочные нюансы текущей жизни мировой разбиваются. И люди учатся — и ученые, и не ученые, руководители — учатся работать вместе, имея в виду учет интересов партнера. Причем это разные ментальности, разные цивилизации, империи, если хотите, участвуют в проекте ИТЭР».
Рассчитывают они на это и сейчас, и строят в надежде на это международный термоядерный реактор ИТЭР читайте о нем в нашем материале «Солнце в бутылку! Быстрее взрыва Но наш главный герой — устройство, совсем не похожее на токамак. Это установка NIF National Ignition Facility — можно перевести как «Национальная зажигательная лаборатория» была построена в США в конце 1990-х годов для изучения управляемого термоядерного синтеза с инерциальным конфайнментом и непрямым лазерным обжатием. Главное слово в этом длинном поезде терминов — прилагательное «инерциальный». Если вы попытаетесь нагреть капсулу с термоядерным топливом скажем, смесью дейтерия и трития до очень высоких температур, при которых теоретически может начаться реакция синтеза, то задолго до нужного градуса и капсула и ее содержимое испарятся и рассеются в пространстве. Именно поэтому создатели токамаков тратят столько усилий на удержание плазмы в ограниченном объеме, чтобы не терять нужные для синтеза плотность и температуру топливной смеси. Но если вы сумеете сжать и нагреть топливо очень быстро и очень сильно, то термоядерная реакция в нем будет идти быстрее, чем разлет вещества капсулы и ее охлаждение. Иначе говоря, инерциальное удержание то есть конфайнмент состоит в том, что и реакция, и выделение энергии происходят до того, как вещество наконец соберется разлететься — точно как в термоядерной бомбе после того, как в ней сработает атомный запал.
Как это сделать? Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного внутрь симметричного взрыва — имплозии — обычной взрывчатки. В 1978 году в письме в Nature физики из ядерного центра в Арзамасе-16 сообщали , что проводили такие эксперименты в 1955 и 1963 годах и достигли успеха — то есть смогли зафиксировать нейтроны, порожденные, по их мнению, термоядерной реакцией в тритиево-дейтериевой мишени. Но к тому моменту у ученых появился значительно более удобный, чем раствор нитробензола в тетранитрометане , инструмент — лазер. Лазерный пресс Один из изобретателей лазера Николай Басов в 1964 году вместе с коллегами опубликовал в ЖЭТФ статью , где рассматривал тонкости нагрева плазмы лазерным излучением, а уже через несколько лет рассказал о результатах первых экспериментов с мишенью из дейтерида лития и они увидел нейтроны, что могло свидетельствовать о термоядерной реакции. За океаном в то же время ходили похожие идеи. Например, американский «отец» водородной бомбы Эдвард Теллер в 1957 году обдумывал вариант взорвать термоядерное устройство в трехсотметровой полости в толще гранита для получения энергии. Это заставило его и его сотрудников искать ответы на два вопроса: каким может быть наименьший энергетический выход термоядерной реакции, который бы имел смысл для коммерческого использования, и какого уровня энерговыделения можно добиться, не используя для запуска реакции «ядерный запал».
Эти вопросы через некоторое время привели их к мысли об использовании лазера — как способа концентрации энергии в очень небольшом пространстве, что позволяло бы достичь необходимых давлений и температур в маленьком объеме топлива, горения которого бы не было разрушительным по масштабу. В 1972 году Джон Накколс из Ливерморской национальной лаборатории имени Лоуренса вместе с коллегами опубликовал в Nature статью , где описал главные черты установки для лазерного термоядерного синтеза и даже привел вычисления, касающиеся ее коммерческой эффективности. Главное преимущество лазера, писал Накколс и его соавторы, состоит в том, что он позволяет создать сверхвысокую плотность вещества, необходимую для зажигания термоядерной реакции. Механические средства могут создать давление не более 106 атмосфер, этот предел задается прочностью химических связей. Взрыв химической взрывчатки может создать давление от 106 до 107 в центре имплозивного взрывного устройства. Но это еще далеко до нужных для инерциального синтеза параметров. Лазерное излучение может довести давление до 108 — 1011 атмосфер и даже выше. Работать это все должно было так: лазерные импульсы, несущие огромную энергию сразу со всех сторон, должны был испарять внешние слои сферической мишени размером в миллиметр, что вызывало бы схлопывание оставшейся части к центру.
И там, в момент наибольшего сжатия, возникали бы условия для «зажигания» небольшой части смеси дейтерия и трития в центре мишени — от 2 до 5 процентов общей массы, которые разогревали бы оставшееся тело мишени. Но достичь успеха удалось не сразу.
Термоядерный синтез
Они увеличились мощность лазеров примерно на восемь процентов, а также изготовили мишень с меньшим количеством дефектов и отрегулировали способ подачи энергии, чтобы взрыв внутрь был более сферическим. До коммерческого получения термоядерной энергии еще далеко Пока что о коммерческом получении термоядерной энергии речь не идет. Дело в том, что воспламенение не компенсирует всю энергию, потраченную на работу лазеров — около 322 мегаджоулей, — а только ту, что была потрачена непосредственно на нагрев мишени. Таким образом, NIF не является установкой для эффективного производства энергии, а служит лишь для экспериментального доказательства самой возможности воспламенения. Многие специалисты сомневаются, что сам подход с использованием лазеров может стать основой для получения термоядерной энергии из-за множества сложных технических проблем. В NIF используется инерциальный управляемый термоядерный синтез ICF , когда реакция инициируется путем теплового сжатия мишеней размером с булавочную головку с помощью лазеров. Однако чтобы доказать, что тип синтеза, проводимый в NIF, может быть жизнеспособным методом производства энергии, эффективность выхода — высвобождаемая энергия по сравнению с энергией, которая идет на создание лазерных импульсов — должна вырасти в 100 и более раз. Этот результат все еще далек от фактического прироста энергии, необходимого для производства электроэнергии Тони Роулстоун, эксперт в области термоядерного синтеза из Кембриджского университета Теоретически проблемы, связанные с низкой эффективностью лазерного нагрева, могут быть решены путем повышения скорости испускания импульсов и быстрого отвода тепла и мусора из камеры для запуска следующей мишени. Также могут быть использованы новые конструкции, где подачу энергию осуществляют лазерные диоды, производящие энергию в диапазоне частот, которые сильно поглощаются стенками хольраумов.
Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики.
Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951. Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте. По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET.
ИТЭР был согласован в 1992 году, строительство началось в 2010-ом. Экспериментальный реактор выполнен, как и JET, по типу «токамак». То есть внутри раскаленная плазма удерживается на расстоянии от стенок установки мощнейшей магнитной системой.
Кстати, сам термин «токамак» — это акроним от советских ученых, обозначающий «тороидальную камеру с магнитными катушками». Первоначальная дата завершения строительства — 2016 год. Но запуск многократно переносился.
Экспериментальная установка для термоядерных реакций в городе Хэфэй работала на протяжении 17 минут. Ученым удалось разогреть плазму до 70 миллионов градусов по Цельсию, что выше температуры Солнце примерно в пять раз. Токамак представляет собой устройство, которое может генерировать сильное магнитное поле. Когда материал нагревается до очень высокой температуры, он превращается в плазму, в результате электроны отделяются от атома и превращаются в свободно движущиеся заряженные частицы, которые удерживаются сильным магнитным полем.
Токамак — тороидальная камера, магнитная катушка. Система удержания плазмы токамак изобретена и предложена в Советском Союзе в Курчатовском институте, и это наш главный вклад. То есть вся кооперация, весь мир строит реактор в концепции, предложенной нашими учеными».
Интересно и то, что соглашение об ИТЭР состоит из двух частей. Первая: о создании самого проекта и его реализации, а вторая — как страны участники будут делить интеллектуальную собственность, которая создается. Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов. Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора. Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы.
и
Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Поговорим о том, зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика — новости от эксперта в мире энергетики, онлайн-журнала «Энергия+». В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных.