Новости катод заряд

Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. Кроме того, использование связующих и несоответствие между катодом и электролитом также могут вызывать побочные реакции. В новых батареях ионы натрия заменяют ионы лития в катоде, а соли лития в электролите (жидкость, которая помогает переносить заряд между электродами батареи) заменяются. Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом.

Андрей Травников оценил приборы ночного видения завода «Катод» для СВО

По состоянию на 9. Российская сторона неоднократно подчеркивала, что ограничение поставок обусловлено исключительно санкциями, из-за которых возникли проблемы с обслуживанием и ремонтом газоперекачивающих агрегатов Siemens. Сейчас работу магистрали обеспечивает только одна турбина.

Это распространенные железо, марганец и титан. Титан — лёгкий серебристо-белый металл. Он находится на 10-м месте по распространённости в природе. Титан обладает очень высокой коррозионной стойкостью.

В середине 90-х «Катод» на свой страх и риск стал участником уникального проекта Российской академии наук по исследованию темной материи, для которого предприятие разработало фотоэлектронные умножители ФЭУ диаметром 350 мм. Это не удалось сделать ни Hamamatsu, ни Philips. ФЭУ «Катода» обеспечили функционирование возможно единственной в своем роде нейтринной обсерватории. Этот проект вдохновил катодовцев, помог поверить в себя и, пожалуй, предопределил выбор направления развития. Мы только знали, что Россия отстает в сфере разработки ЭОПов от развитых стран лет на 25. По сути, наша армия в темноте была абсолютно беспомощна. В итоге мы опередили наших зарубежных коллег на несколько лет». ПНВ «Катода» стали меньше и легче, весили меньше килограмма. В первые годы предприятие выпускало 3—4 прибора в сутки, сегодня — 36. Серийное производство приборов ночного видения — очень сложный процесс, так как все производственные этапы создания электронно-оптических преобразователей проходят в глубоком вакууме. В то время никто не производил подобного оборудования, специалистам «Катода» пришлось самим его разработать и запатентовать уникальную для рынка технологию производства. И этот процесс не останавливался. Сегодня АО «Катод» — единственное в России и третье в мире предприятие, обладающее технологией крупносерийного производства ЭОП третьего новейшего поколения — главного элемента в приборах ночного видения как гражданского, так и военного назначения. Благодаря ЭОП последнего поколения приборы ночного видения позволяют видеть практически в полной темноте. Здесь работает порядка семи научных подразделений и лабораторий. Только за последние пять лет «Катод» провел более 20 научно-исследовательских и опытно-конструкторских работ. Они касались как улучшения параметров существующих приборов, так и создания совершенно новых изделий, которые раньше вообще не выпускались. От юбилея к юбилею Выступая на торжественном мероприятии в честь 60-летия компании, Владимир Локтионов рассказал об успехах «Катода» за последние пять лет. Предприятию есть чем гордиться.

Но стоит еще раз подчеркнуть, что батареи на подобных материалах приближаются к пределу своих возможностей и не сохранят лидирующие позиции в будущем. Foxconn заявила, что демонстрация ее твердотельных Ssbt-продуктов состоится в конце 2021 года, а серийный запуск производства — к 2024 году. Почему основное применение твердотельных аккумуляторов ожидается в индустрии электромобилей? Ssbt-батареи потенциально предлагают меньший вес, повышенную надежность, дальность действия, безопасность и меньшую скорость перезарядки, по сравнению с жидкостными батареями. Все эти преимущества, вместе взятые, фактически произведут революцию в индустрии электромобилей. Это, в свою очередь, создаст огромную потребность в поставках лития во всем мире, что приведет к увеличению затрат на производство новых батарей если не будут разработаны способы безопасной и надежной утилизации старых Li-on батарей. Чтобы преодолеть это потенциальное узкое место в поставке аккумуляторных батарей, многие автомобильные компании сами разрабатывают более дешевые и устойчивые solid-state battery. Например, Toyota недавно объявила, что планирует добавить Ssbt-батареи в свои новые автомобили уже в 2021 году. Согласно отчету, опубликованному Nikkei Asia , это может позволить электромобилям предлагать запас хода в 310 миль 500 км на одной зарядке, а также быструю перезарядку с нуля до полной за 10 минут. General Motors вместе с SolidEnergy Systems организовал производство аккумуляторов Ultium с жидким электролитом, анодами на базе графита и катодов с комбинацией никеля, кобальта, марганца и алюминия. Это снизит потребность в дефицитных металлах, а также позволит удвоить плотность хранения заряда в аккумуляторах без ущерба для безопасности. В Китае появляются электромобили на альтернативных литий-железо-фосфатных аккумуляторах ЛЖФ. Они дешевле и менее токсичные, однако имеют меньшую емкость. Tesla и Volkswagen также обещают в ближайшие годы сократить использование кобальта. BMW и Ford нацелены использовать низкозатратную и эффективную технологию твердотельных аккумуляторов Solid Power в будущих электромобилях. Murata Manufacturing планирует в ближайшие месяцы развернуть серийное производство solid-state battery. Японская компания намерена поставлять их производителям наушников и других носимых устройств. Прорыв в области производства стал возможен за счет объединения технологии литий-ионных аккумуляторов, приобретенной у Sony, с процессами ламинирования, разработанными для производства многослойных керамических конденсаторов — основного вида продукции компании, базирующейся в Киото. Компания планирует начать производство полностью твердотельных Ssbt-батарей до начала 2022 года с серийностью до 100 000 аккумуляторов в месяц. Солевые батареи для электромобилей и солнечной энергетики Другие варианты для электромобилей и солнечной энергетики включают использование гибрида традиционных и твердотельных батарей. Один из ярких примеров — это батареи на солевой основе. Это своего рода квазитвердотельная QSS батарея. В этих экспериментальных батареях в качестве электролита и сепаратора батареи используются соли. Это решение интересно тем, что потенциально является безопасным, «зеленым», доступным по цене и полностью пригодным для вторичной переработки. Совместный исследовательский проект между Ноттингемским университетом Великобритания и шестью исследовательскими институтами Китая недавно объявил о некотором прорыве в этой области. Основываясь на тестах с использованием расплавленных солей, активируемых нагреванием, команда улучшила конструкцию, использовав вместо них твердые соли. Это изменение явилось результатом их предыдущих выводов о том, что расплавленные соли обладают высокой коррозионной активностью, летучестью и склонны к испарению и утечке. Если исследование этой международной группы ученых окажется плодотворным, оно может привести к новому и интересному решению для более безопасных и эффективных решений по хранению аккумуляторов для солнечных электростанций и автомобильной промышленности. Девять из десяти крупнейших обладателей патентов — азиатские компании. Единственный представитель другого региона — немецкий концерн Bosch, занявший пятое место. Мы приближаемся к рассвету массового распространения электромобилей во всем мире, и теперь, возможно, настало время для выхода на арену твердотельных аккумуляторов. Остается только догадываться, какие типы Ssbt-батарей возьмут верх. Фактом остается, что будущее устройств с батарейным питанием стоит на грани необходимой технологической революции.

Долговечные литий-металлические аккумуляторы разработали в KIT

Знание того, какой заряд имеет катод, является ключевым для понимания его функции и влияния на электролитические. Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. Новая литий-ионная батарея содержит катод на основе органических веществ вместо кобальта и никеля. Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта. КАТОД – профессиональный ремонт турбин, стартеров и генераторов для всех видов транспорта. Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам.

Долговечные литий-металлические аккумуляторы разработали в KIT

Название статьи говорит само за себя: «Проводящий анод с S-легированием из многовалентного сульфида железа с низкой кристалличностью и катод из 3D-пористого графитового углерода с высоким содержанием N [натрия] для высокопроизводительных натриево-ионных гибридных накопителей энергии». Понятно, что нельзя просто взять и объединить в новом устройстве аноды от обычных аккумуляторов и катоды от суперконденсаторов. Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. Поэтому учёные пошли по пути создания объёмных электродов на основе пористых 3D-материалов — так называемых металлорганических каркасов.

За последние полгода завод увеличил выпуск электронно-оптических приборов в несколько раз. Губернатор Андрей Травников во время выездного совещания на площадке «Катода» отметил, что сейчас наблюдается очень высокий спрос на современное оборудование, которое производит завод. Ведь кратное увеличение объёмов производства, в частности, на «Катоде», — это серьезный вклад в повышение эффективности работы наших бойцов», — сказал Травников.

Жидким электролитам присущи некоторые проблемы. При более высоком напряжении внутри электролитов образуются нити металлического лития, что со временем увеличивает риск короткого замыкания батареи. Поэтому, электролиты в современных литий-ионных батареях легко воспламеняются. Именно здесь твердотельные батареи обеспечивают гораздо больший уровень безопасности, чем литий-ионные батареи. Например, использование альтернативных керамических электролитов имеет гораздо меньшую вероятность возгорания. Керамические материалы также помогают предотвратить образование литиевых нитей, которые теоретически могут позволить таким батареям работать при гораздо более высоких напряжениях. Однако керамика достаточно хрупкий материал и может оказаться проблематичным при эксплуатации и производстве. Существуют решения, позволяющие упредить эту проблему, к примеру, пропитка керамики наночастицами графена. Это не только увеличивает долговечность керамических электролитов, но помогает усиливать их ионную проводимость. Помните, что электролиты проводят ионы, а не электричество? Эксперименты в этой области, проводимые группами, к примеру, из университета Брауна, показали, что этот раствор может удвоить или утроить прочность керамического электролита, сохраняя его полезность в качестве потенциального электролита и сепаратора твердотельной Ssbt-батареи. Другие варианты включают использование органических катодов в сочетании с твердотельными ионно-натриевыми батареями. Это интересно, поскольку существующие натриево-ионные батареи, хоть и являются твердотельными, не обладают плотностью энергии литий-ионных батарей. Другая проблема, связанная с твердотельными батареями solid-state battery такого типа, заключается в том, что слой неактивных кристаллов натрия имеет тенденцию нарастать на катоде, блокируя движение ионов натрия и эффективно разрушая батарею. Так, используя катод из пирен-4, 5, 9, 10-тетраона PTO , исследовательская группа из Хьюстонского университета обнаружила, что этот вид катода имеет много преимуществ, по сравнению с неорганическими, более традиционными катодами. Например, использование PTO позволяет фактически поменять местами резистивную поверхность раздела между катодом и электролитом. Это имеет большое значение для стабильности и увеличения срока службы таких батарей, а также для повышения плотности энергии. Обеспечивая тесный контакт между жестким катодом и твердым электролитом, независимо от изменения диаметра катода во время цикла батареи, это может изменить правила игры для solid-state battery. Но сбрасывать со счетов натриево-ионные твердотельные батареи пока не стоит. Поскольку другие исследовательские группы работают над поиском решения проблем, присущих именно этой технологии. Группа из университета штата Вашингтон WSU и Тихоокеанской северо-западной национальной лаборатории PNNL нашла способ предотвращения накопления неактивного натрия на катодах. Они обнаружили, что создание катода из оксида металла, пропитанного дополнительными ионами натрия, позволило беспрепятственно производить электричество. Это также может оказаться революционным шагом, потому что позволит производить натрий-ионные батареи наравне с литий-ионными альтернативами. Это значит, что даже если solid-state battery technology, как упоминалось ранее, считается лучшей альтернативой литий-ионным батареям, могут появиться компромиссные технологии — твердотельные литиевые батареи. Исследовательская группа из Мичиганского университета работает именно над этим проектом. Им удалось интегрировать твердые керамические электролиты в литий-ионные батареи и продемонстрировать заметное улучшение долговечности и срока службы, по сравнению с более традиционными литий-ионными батареями. Такой подход также позволил увеличить скорость зарядки аккумуляторов. Есть исследователи, совершившие прорыв в производстве твердотельных литиевых батарей для 3D-печати. В случае масштабирования проекта до производства, это нововведение позволит удешевить производство литий-ионных аккумуляторов, которые имеют ряд преимуществ перед другими аккумуляторами SSD например, безопасность, повышенная плотность энергии и т. Все бы хорошо, но в новых батареях по-прежнему используются литий-ионы, которые встречаются в природе редко и не являются самыми «чистыми» материалами при добыче и обработке. Это еще одно важное различие между литий-ионными батареями и их твердотельными альтернативами — неотъемлемое влияние на окружающую среду. Литий-ионным батареям требуются такие токсичные компоненты, как кобальт и, разумеется, сам литий. Эти материалы относительно редки, дороги в добыче и переработке, их добывают на рудниках в бедных странах или регионах, где мало или вообще не уделяется внимание благополучию рабочих и окружающей среде. Если вы помните , мы рассказывали в предыдущих статьях о возможных победителях и проигравших в индустрии электромобилей, потому что добыча лития требует огромного количества воды как в процессе экстракции, так и в бассейнах испарения, которые используются для производства кристаллов, богатых литием.

Материал неоднороден и стремится к разрушению со всеми сопутствующими рисками выхода из строя целой ячейки. Это в очередной раз доказывает нам — брак аккумулятора вероятен даже в самых дорогих и проверенных линейках потребительских устройств. Больше науки Пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте NeovoltRu. Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

Как технологии твердотельных Ssbt-аккумуляторов изменят мир

Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта. Вот казалось бы, только вчера мы начали работу над проектом Заряд. После чего электроны переносятся на катод, где они используются вместе со свободными протонами для восстановления кислорода до воды», — пояснила Екатерина Вахницкая. Они показали, что такие катоды могут выдерживать до 25,000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия.

EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей

Катод это электрод, имеющий отрицательный заряд, а анод заряжен положительно. Что такое Анод и Катод? "В катодах батарей для электромобилей, как правило, используются слоистые оксиды переходных металлов, в том числе богатые никелем. Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду.

Новый материал для батарей поможет электрокарам ездить дольше на одном заряде

Зарядное устройство забирает электроны с катода, оставляя его с положительным зарядом, и направляет их на анод, сообщая ему отрицательный заряд. Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. КАТОД – профессиональный ремонт турбин, стартеров и генераторов для всех видов транспорта.

Из полимеров сделали катоды для литиевых аккумуляторов

Также на «Катоде» производят фотоэлектронные умножители для научных исследований, по заказу Института ядерной физики успешно заместили итальянские насосы для синхротрона «СКИФ». А в 2022 году взяли на себя выполнение объемного государственного заказа. Чтобы участники специальной военной операции были обеспечены необходимой экипировкой, сотрудники предприятия трудятся круглосуточно, без выходных.

Осознание острой нехватки лития в мире привело к взлету цен на его соединения: они выросли пятикратно в конце 2022 — начале 2023 гг.

Потом произошел «откат», и стоимость лития значительно снизилась к концу 2023 года, но тренд уже всем понятен — литий будет постоянно дорожать из-за его острой нехватки для нужд стремительно растущей аккумуляторной промышленности. Очевидно, что нужна альтернативная технология хранения энергии — не литиевые аккумуляторы, а какие-то другие, которые работают без лития, но при этом дают сопоставимые технические характеристики. Самой логичной заменой литию будут натрий и калий — это близкие по природе химические элементы, которые находятся в той же группе периодической таблицы, что и литий.

Однако натрия и калия много как в земной коре, так и в мировом океане — эти ресурсы почти безграничны. Потому стоимость натрия и калия на порядки ниже, чем лития. К сожалению, просто так взять и заменить литий в аккумуляторе на натрий или калий не получится.

В качестве типичных электродных материалов в современных аккумуляторах используются оксиды или соли тяжелых металлов катод и графит анод , между которыми в ходе зарядки и разрядки «курсируют» ионы лития. Ионы натрия и калия значительно больше по размеру, потому они попросту не помещаются в структуру тех катодных материалов, которые работают с ионами лития.

Исследователи обращаются к дисульфиду ванадия VS2 не в первый раз. И всегда основным препятствием в реализации такой батареи была нестабильность этого материала. Низкая стабильность означает короткий срок службы аккумулятора. Американские ученые в ходе исследований не только нашли причину нестабильности, но и способ устранить ее. Они определили, что литий вызывает асимметрию в атомах ванадия, из-за которого разрушались хлопья VS2. Но если покрыть их нанослоем дисульфида титана, это повысит стабильность материала и улучшит его производительность в батарее.

Сохранить публикацию Согласно новому исследованию, возможно создание литий-ионной батареи, которая может заряжаться за считанные минуты, при этом работать с большой емкостью. Ученые не первый год думают о том, как заменить оксид лития-кобальта в катоде батареи на дисульфид ванадия.

Специалисты из США разобрались, как сделать так, чтобы перспективный материал не сокращал срок службы аккумулятора. Новое открытие делает возможным быструю зарядку и высокую производительность литий-ионных аккумуляторов Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Обычно анод делается из графита, а катод — из оксида лития-кобальта. Эти материалы хорошо сочетаются вместе, но специалисты Ренсселерского политехнического института считают, что эффективность системы можно увеличить.

Другие новости

  • Последние комментарии
  • Литий «с плюсом»
  • Научились заряжать аккумулятор за несколько секунд ученые в России
  • В ЮФУ предложили экологичный метод производства катодов для литий-ионных аккумуляторов
  • Автоматическое зарядное устройство КАТОДЪ-501

В ЮФУ предложили экологичный метод производства катодов для литий-ионных аккумуляторов

  • Читайте также:
  • Катоды и аноды: отрицательно и положительно заряженные электроды
  • В Корее разработали натриево-ионный аккумулятор со скоростью зарядки в несколько секунд (2 фото)
  • Химики впервые перезарядили тионилхлоридный аккумулятор
  • Новые материалы для катодов ускорят зарядку в 3-4 раза
  • Новый материал для батарей поможет электрокарам ездить дольше на одном заряде | CoLab

В ЮФУ предложили экологичный метод производства катодов для литий-ионных аккумуляторов

  • Китайская CATL представила первые натрий-ионные аккумуляторы для электромобилей
  • Создан уникальный катод для металл-ионных аккумуляторов
  • Новости технологий и науки
  • Новосибирский завод «Катод» поставил приборы ночного видения бойцам СВО
  • Статьи по теме «катоды» — Naked Science

Научились заряжать аккумулятор за несколько секунд ученые в России

Например, нанести на поверхность частиц слой высокопроводящего углеродного покрытия, в результате чего электронная проводимость материала может возрасти многократно Ravet, Armand, 1999. Этому же способствует, например, и допирование материала катода алюминием, цирконием и другими металлами Chiang, 2002. Время российского «нано»? В 2000 г. Ямато Sony первым показал, что в наноразмерном состоянии железофосфат лития способен работать даже при высоких скоростях заряда-разряда. На сегодняшний день наноразмерные композиты железо-фосфата лития и углерода практически не уступают по электрохимическим показателям другим известным катодным материалам. Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность. С чем же связано улучшение мощностных характеристик электродных материалов, особенно с низкой электронно-ионной проводимостью, при повышении их дисперсности?

Это приводит к ускорению ионного транспорта и, соответственно, процессов заряда-разряда в аккумуляторах. Меньшие по размеру частицы также лучше адаптируются к объемным изменениям в ходе внедрения и экстракции ионов лития, что способствует повышению структурной стабильности материалов. С увеличением дисперсности наблюдается и повышение электрохимической емкости. Особенность этого способа в том, что синтез наночастиц LiFePO4 из исходных реагентов идет параллельно с модифицированием поверхности этих частиц углеродом. В 2011 г. В сфере литий-ионных аккумуляторов все происходит на удивление быстро. Так, кобальтат лития был предложен в качестве катодного материала в 1986 г.

Синтезировать железо-фосфат лития сложнее, к тому же он выходил на уже имеющийся рынок, однако в данном случае от идеи до внедрения прошло не более десятка лет. И сразу же после этого многие автомобилестроительные компании, такие как Toyota, Renault, General Motors, Nissan и др. Сейчас разрабатываются новые виды литиевых аккумуляторов — литий-серные и литий-воздушные. При использовании кислорода воздуха в качестве катода плотность аккумулирования энергии может увеличиться в 5—10 раз! Рекордные значения удельной энергии и емкости, характерные для литий-воздушных аккумуляторов, а также низкая стоимость реагентов объясняют большой практический и экономический интерес к этой теме. В последние годы в США на эти исследования тратятся миллиарды долларов, в России же это направление только начинает развиваться. Но самый удивительный вклад в разработку ЛИА собираются внести...

Ученые из Массачусетского технологического института показали, что с помощью генетически модифицированных бактериофагов — вирусов, инфицирующих бактерии и безвредных для человека, — можно наладить процесс самосборки рабочих электродов литиевого аккумулятора.

Также KPFM даёт возможность измерить потенциалы на поверхности материала оценить величину заряда. Выяснилось, что на межзёренных границах отрицательного электрода на катоде в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития что происходит в момент зарядки и разрядки аккумуляторов они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания.

Большинство современных катодных материалов представляют собой слоистые оксиды переходных металлов, включающие, например, кобальт, никель и марганец. Один из способов исследования включает накопление заряда на ионах оксидов, а также на ионах переходных металлов. Использование новых кислородно-окислительно-восстановительных материалов для увеличения плотности энергии катода может стать прорывом, но реализация полного потенциала этой новинки в промышленных масштабах была затруднена.

При работе электролизера например, при рафинировании меди внешний источник тока обеспечивает на одном из электродов избыток электронов отрицательный заряд , здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод. В то же время при работе гальванического элемента к примеру, медно-цинкового , избыток электронов и отрицательный заряд на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла растворения цинка , то есть у гальванического элемента отрицательным, если следовать приведённому определению, будет анод. Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления меди , то есть катодом будет являться положительный электрод. В соответствии с таким толкованием, для аккумулятора знак анода и катода меняется в зависимости от направления протекания тока.

Химики впервые перезарядили тионилхлоридный аккумулятор

Профессор Нисихара и его команда полагают, что GMS-лист станет важной вехой в производстве углеродных катодов для литий-O2-батарей. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее. "В катодах батарей для электромобилей, как правило, используются слоистые оксиды переходных металлов, в том числе богатые никелем. Анод и катод аккумулятора содержат металлы, которые в зависимости от направления тока (заряд или разряд). Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали. Построена модель термополевой электронной эмиссии из металлического катода с тонкой поверхностнойдиэлектрической пленкой при его температуре 200–400 К. Получено выражение.

Похожие новости:

Оцените статью
Добавить комментарий