С этой точки зрения, они взяли одну из широко распространенных моделей, так что никаких претензий. Во-вторых, основным движущим фактором эволюции считается естественный отбор — процесс, в результате которого особи с более благоприятными с точки зрения окружающей среды мутациями имеют больше шансов на передачу своих генов будущим поколениям. Некоторые бактерии, выращиваемые в лаборатории, получили способность использовать цитрат как энергетический ресурс. Эволюция микроорганизмов Главная проблема – Эволюция 3 доменов жизни: Бактерий, Археев и Эукариот и создание универсального дерева жизни.
Происхождение, эволюция, место бактерий в развитии жизни на Земле
Правильный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология. MOGZ ответил. Қaзaқ тілі мен әдебиеті Т2» пәнінен 3-тоқсaн бойыншa тоқсандық жиынтық 1) Какое из представленнах множеств является перссечением множества. Основные положения эволюционного учения Ч. Дарвина.
Концепции происхождения и развития микроорганизмов
Например, адаптивные случайные изменения, требующие одной мутации, могут происходить часто. Именно поэтому малярийный паразит может адаптироваться к большинству антималярийных препаратов; но на преобретение сопротивляемости хлорохину ушло больше времени, поскольу нужно было произойти двум мутациям одновременно в одном гене. Даже такое маленькое изменение находится за пределами возможностей организмов, таких как люди, у которых длительность поколений намного большая. В тоже время, популистский подход например New Scientist к этому исследованию создает впечатление, что E. Однако, это явно не тот случай, потому что цикл лимонной кислоты, цикл трикарбоновых кислот ЦТК или цикл Кребса разные названия одного и того же производит и использует цитрат в нормальном окислительном метаболизме глюкозы и других углеводов.
Среди которых есть ген транспортера цитрата, кодирующий белок-транспортер, встроенный в клеточную стенку и отвечающий за транспорт цитрата в клетку. Так что же произошло? Еще не все очевидно, исходя из опубликованной информации, но скорее всего, мутации нарушили регуляцию этого оперона, в результате чего бактерия производит транспортер цитрата независимо от окислительного состояния окружающей среды то есть, он постоянно включён. Это можно сравнить с переключателем, который включается, когда солнце заходит, поскольку сенсор обнаруживает недостаток света и активирует переключатель.
Нарушение в работе этого сенсора может привести к тому, что свет будет включен все время. Это именно тот тип изменения, о котором идет речь. Другая возможность состоит в том, что существующий ген-транспортер, например, тот, который доставляет тартрат,[3] который обычно не транспортирует цитрат, мутировал и в следствии этого он потерял специфичность и теперь способен к транспортировке цитрата в клетку. Подобная потеря специфичности также является следствием случайных мутаций.
Потеря специфичности приравнивается к потере информации, но для эволюции требуется появление новой информации; информация, которая определяет инструкции по созданию ферментов и кофакторов в новых биохимических путях, например, как создавать перья, крылья, кости, нервы или сложные компоненты и способ сборки сложных двигателей, таких как АТФ-синтаза, например. Однако, мутации хорошо способны разрушать, а не созидать. Иногда разрушение может быть полезным адаптационным ,[7] но это не отвечает за создание огромнейшего количества информации в ДНК всех живых существ. Бихи в своей книге «Предел эволюции» приравнял роль мутаций в сопротивляемости антибиотиков и патогенов, к например, окопной войне, в результате которой мутации уничтожают некоторые функции, чтобы преодолеть восприимчивость.
Это так, как если бы вы положили жевательную резинку в механические часы; они не могли быть созданы таким образом. Много шумихи без причины снова Бихи прав; здесь нет ничего, что было бы за «пределами эволюции», то есть все это не имеет никакого отношения к происхождению ферментов и каталитических путей, что должна объяснить эволюция. Блаунт обнаружил, что к использованию бактериями цитрата привели три шага: 1. Потенцирование: Шаг, включающий в себе по меньшей мере 2 мутации.
Он обнаружил одну возможную мутацию, единичное изменение нуклеотида SNP , повреждающее ген, известный как arcB, который регулирует работу цикла Кербса ЦТК , что могло привести к ускоренному метаболизму цитрата. Актуализация: дупликация гена, производящего белок-транспортер цитрата, что позволило использовать цитрат. Дупликация гена в месте без обычной контролирующей его последовательности позволило его экспрессии в присутствии кислорода поскольку он попал под контроль уже существующего промотора, который был «включен» в присутствии кислорода.
В конце 19 в. Кох и другие ученые значительно усовершенствовали методы идентификации этих патогенов и описали множество их видов. Строение: Это мельчайшие организмы, обладающие клеточным строением, не имеющие настоящего оформленного ядра. Бактерии освоили самые разнообразные среды обитания: почву, воду, воздух, внутреннюю среду организмов. Снаружи бактерии покрыты капсулой или клеточной стенкой из муреина. Плазматическая мембрана бактерий по структуре и функциям не отличается от мембран эукариотических клеток.
В результате опыта Миллера одновременно образовались и органические кислоты, нарушающие целостность и функции живого организма. Если бы эти аминокислоты не были изолированы, то в результате химической реакции они были бы разрушены или превращены в другие соединения. Плюс ко всему, в результате опыта было получено множество D-аминокислот. Присутствие же этих аминокислот сокрушает теорию эволюции в самой основе. Потому что D-аминокислоты отсутствуют в структуре живого организма. И наконец, среда, в которой в ходе опыта образовались аминокислоты, состояла из смеси едких кислот, разрушающих возможные полезные молекулы, то есть эта среда неблагоприятна для появления в ней живого. Все это говорит только об одном — опыт Миллера не доказывает возможность происхождения жизни в первичных условиях Земли, а является лишь контролируемой и сознательной лабораторной работой, направленной на синтез аминокислот. Виды и количество использованных газов были подобраны в самой идеальной для образования аминокислоты пропорции. То же самое касается и количества энергии, использованной для получения желаемой химической реакции. Прибор, использованный в опыте, был изолирован от всевозможных вредных, разрушающих структуру аминокислоты элементов, присутствие которых в первичной среде не исключено. Минералы, соединения и элементы, присутствующие в ранней атмосфере и способные изменить ход реакции, также не были использованы в опыте. Одним из таких элементов является кислород, который в результате окисления способствует разрушению аминокислот. В конце концов, даже в идеальных условиях лаборатории невозможно обойтись без механизма «холодного капкана», чтобы предовратить расщепление аминокислот уже под влиянием собственной среды. В результате, опытом Миллера эволюционисты собственными же руками загубили свою теорию. Потому что опыт доказал, что аминокислоту можно получить только в специальных лабораторных условиях при сознательном вмешательстве со стороны. То есть сила, создавшая живое, — Творец, а не слепое совпадение. Но предубеждения эволюционистов, полностью противоречащие науке, не позволяют им признать очевидную истину. Гарольд Ури, организовавший этот опыт вместе со своим учеником Миллером, признается в следующем: «Все мы, исследовавшие возникновение жизни, сколько бы исследований ни проводили, всегда приходили к выводу: жизнь настолько комплексна, что не могла эволюционировать на каком-либо этапе своего развития. Но, следуя своим убеждениям, мы верим в то, что жизнь произошла из неживого. Однако эта комплексность настолько велика, что даже представить эволюцию для нас очень сложно. Даже сегодня они продолжают вводить в заблуждение людей, создавая вид, будто этим опытом вопрос давно уже разрешен. На второй стадии попыток разъяснения случайного возникновения жизни эволюционистов ждет проблема поважнее, чем аминокислоты — белки. То есть строительный материал жизни, образующийся путем последовательного соединения сотен различных аминокислот. Утверждение относительно самообразования белка еще нелогичнее и фантастичнее, чем утверждение случайного образования аминокислот. Невозможность соединения аминокислот в определенном порядке для образования белка была вычислена математически на предыдущих страницах с помощью теории вероятностей. Однако самообразование белка в условиях первичной атмосферы Земли невозможно и с точки зрения химии. Синтез белка невозможен в воде Как уже упоминалось ранее, при синтезе белка между аминокислотами образуется пептидная связь. Во время этого процесса выделяется одна молекула воды. Эта ситуация коренным образом опровергает утверждения эволюционистов о возникновении жизни в океане. Потому что в химии, согласно принципу «Ле Шателье», реакция, которая образует воду реакция конденсации , не будет завершена в среде, состоящей из воды. Протекание этой реакции в водной среде характеризуется среди химических реакций, как «наименьшая вероятность». Отсюда следует, что океаны, в которых якобы возникла жизнь, отнюдь не подходящая среда для образования аминокислоты и впоследствии — белка. С другой стороны, они не могут изменить свои суждения перед этими фактами и утверждать, что жизнь возникла на суше. Потому что аминокислоты, предположительно образовавшиеся в ранней атмосфере Земли, могут быть защищены от ультрафиолетовых лучей только в море и океане. На суше же аминокислоты будут разрушены под воздействием ультрафиолетовых лучей. Принцип Ле Шателье опровергает возникновение жизни в море. А это в свою очередь — еще один тупик в теории эволюции. Очередная безрезультатная попытка: опыт Фокса Оказавшись в безвыходном положении, исследователи-эволюционисты начали придумывать невиданные сценарии по «проблеме воды». Один из знаменитейших среди них Сидней Фокс вывел новую теорию, чтобы решить этот вопрос: аминокислоты, образовавшись в океане, сразу же перенеслись в скалистые места рядом с вулканами. Затем вода в смеси, в состав которой входили и аминокислоты, испарилась под воздействием высокой температуры скалистых мест. В результате «высохшие» аминокислоты могли соединяться для образования белка. Однако этот «тяжелый» выход из положения никем не был признан. Потому что аминокислоты не смогли бы выдержать температуру, о которой говорил Фокс. Исследования показали, что аминокислоты под воздействием высокой температуры непременно разрушаются. Но Фокс не сдавался. В «специальных условиях» лаборатории, упрощенные аминокислоты были подогреты в сухой среде и соединены. Аминокислоты были соединены, но получить белок так и не удалось. Полученное представляло собой соединение простых, беспорядочных звеньев аминокислот и никоим образом не было похоже на белок. Более того, если бы Фокс подвергал аминокислоты постоянной температуре, то даже образовавшиеся бесполезные звенья аминокислот распались бы. Еще одна деталь, обессмысливающая опыт, заключается в том, что Фокс использовал в своем опыте аминокислоты, содержащиеся в живых организмах, а не те, которые в свое время получил Миллер. Между тем, он должен был отталкиваться именно от результатов опыта Миллера. Но ни Фокс, ни другие не использовали непригодные аминокислоты, полученные Миллером. Опыт Фокса не был воспринят положительно даже среди эволюционистов, так как полученные Фоксом непонятные цепи аминокислот протеиноиды не могли образоваться в естественных условиях. А белок, являющийся строительным материалом живого, так и не был получен. Вопрос о происхождении белка оставался неразрешенным. В популярном научном журнале 70-х годов «Chemical Engineering News» была опубликована статья относительно опыта Фокса: «Сидней Фокс и другие исследователи, используя специальную технику нагревания, смогли получить соединения аминокислот, называемые «протеиноидами» в условиях, не существовавших на начальном этапе Земли. Вместе с тем, они никак не похожи на упорядоченные белки живых организмов и представляют собой лишь хаотичные, бессмысленные пятна. Даже если эти молекулы и присутствовали первоначально, то разрушение их впоследствии было неизбежно. Разница между ними подобна разнице между аппаратурой сложной технологии и кучей необработанного металла. Эта вера абсолютно противоречит науке, ибо все опыты и исследования показали, что материя не обладает подобными способностями. Известный английский астроном и математик сэр Фред Хойль объясняет это на следующем примере: «Если бы внутри материи был бы внутренний принцип, побуждающий ее к образованию жизни, то это можно было бы продемонстрировать в любой лаборатории. Например, какой-нибудь исследователь мог бы использовать для опыта бассейн, который представлял бы собой первичный «бульон». Можно было бы заполнить этот бассейн всеми видами неживых химических веществ, закачать любые газы и облучить поверхность радиацией любого вида. Проделав этот опыт в течение целого года, проконтролируйте, сколько ферментов из 2000 жизненно необходимых видов смогло образоваться за этот период. Я отвечу вам сразу, чтобы вы не теряли времени на этот опыт.
Кроме того, бактерии могут воспроизводиться всего за 20 минут, что позволяет быстро адаптироваться, а это означает, что новые штаммы бактерий могут быстро развиваться. Это стало проблемой для устойчивых к антибиотикам бактерий. Термофильных бактерий из глубоководных источников. Этот организм поедает серу и водород и связывает свой углерод из углекислого газа. Считается, что они являются одними из самых ранних форм жизни. Свидетельства существования этих организмов были обнаружены в австралийской вершине Апекс-Черт возле древних гидротермальных источников. Возраст этих пород составляет 3,46 миллиарда лет, и считается, что эти окаменелости принадлежали ранним термофильным бактериям. Это потому, что эти организмы не нуждаются в кислороде для выживания, который был элементом, который не присутствовал в больших количествах в ранней атмосфере Земли.
11. Бактерии. Эволюция или адаптация?
Бактерии освоили самые разнообразные среды обитания: почву, воду, воздух, внутреннюю среду организмов. Снаружи бактерии покрыты капсулой или клеточной стенкой из муреина. Плазматическая мембрана бактерий по структуре и функциям не отличается от мембран эукариотических клеток. У некоторых бактерий плазматическая мембрана впячивается внутрь клетки и образует мезосомы. На поверхности мезосомы находятся ферменты, участвующие в процессе дыхания. Во время деления бактериальной клетки, мезосомы связываются с ДНК, что облегчает разделение двух дочерних молекул ДНК.
Это микроскопические одноклеточные, которые встречаются почти повсеместно: в водоемах, почве, на предметах обихода, в кормах и продуктах питания, на поверхности скал и глубоко под землей, а также в организмах растений, животных и человека. Подвижные передвигаются при помощи жгутиков или за счет волнообразных сокращений. Большинство бактерий бесцветны.
Кроме того Пастер доказал, что в процессе брожения вина, пива и прочих пищевых продуктов происходит выделение ядовитых веществ. Это технология получила название — пастеризация. Микробиология от греч. Клеточное строение и жизнедеятельность бактерий. Бактерии от греч. Клеточное строение бактерии представлено клеточной мембраной, прочной клеточной стенкой и цитоплазмой Рис. В зависимости от строения клеточной стенки выделяют две группы бактерий: Грамположительные — имеют внутреннюю мембрану и более толстый слой пептидогликана окрашиваются в синий или фиолетовый цвет по методу Г. Грамотрицательные — имеют три слоя: внутренняя мембрана, тонкий слой пептидогликана и наружная мембрана окрашиваются в розовый или красный цвет Рис. Цитоплазма включает в себя белки, жиры и кольцевую молекулу ДНК — нуклеоид основное наследственное вещество бактерии. Оформленного ядра нет. На поверхности бактерии имеются мелкие нитевидные выросты —пили, служащие для передачи наследственной информации между бактериями в ходе полового размножения см. Передвижение бактериальной клетки обеспечивает один или несколько жгутиков. Формы и цвет бактерий: По форме бактерии подразделяют на три группы: шаровидные, палочковидные и извитые. Наиболее простыми считаются шаровидные, их называют кокками. Формы в виде виноградной грозди называют — стафилококки, в виде цепочки — стрептококки. Большая часть бактерий обладает палочковидной формой, однако встречаются и в виде запятой — вибрионы, в виде спирали латинская буква «S» — спириллы. По цвету бактерии в основном бесцветны, однако есть и с пигментами зеленые и пурпурные, способные к фотосинтезу. Бактерии распространены повсеместно.
Она называется нуклеоид. Хромосома обычно в бактериальной клетке имеется в единственном экземпляре, но иногда может содержаться несколько ее копий. У фототрофных, нитрифицирующих бактерий имеется обширная сеть цитоплазматических мембран, представленная сливающимися пузырьками, как граны хлоропластов у эукариот. У тех бактерий, которые живут в водной среде, есть газовые вакуоли аэросомы , функция которых заключается в регуляции плотности. Также в цитоплазме имеются включения запасных питательных веществ: полифосфатов, полисахаридов, соединений серы, т. Основным элементом бактериальной клетки являются рибосомы, расположенные в цитоплазме клетки. У некоторых видов спорообразующих бактерий в параспоральных тельцах образуется токсин, вызывающий гибель личинок насекомых. Размножение Бактерий По достижении определенных параметров клетки бактерии начинают размножаться бесполым и половым способом. Многие бактерии лишены полового процесса, и размножение у них протекает только путем деления или почкования. Так, практически всем видам бактерий присуще множественное равновеликое бинарное деление, представляющее собой ряд последовательных простых делений каждой клетки за короткий отрезок времени на две идентичные клетки. Деление грамположительной бактериальной клетки осуществляется после репликации удвоения ДНК. Рисунок 3. Деление бактериальной клетки Особенность бесполого способа размножения грамотрицательных бактерий состоит в том, что деление происходит путем формирования перетяжки при втягивании мембраны и клеточной стенки внутрь клетки. Почкование представляет собой процесс образования и роста почки на одном из полюсов материнской клетки, которая проявляет признаки старения и не дает более дочерних клеток. Половое размножение у бактерий осуществляется в примитивной форме. У бактерий не образуются гаметы, и нет слияния клеток. При половом процессе часть ДНК бактериальной клетки донора транспортируется в клетку реципиента и замещает аналогичную часть ДНК реципиента под воздействием необходимых ферментов. Новообразованная рекомбинантная ДНК бактерии содержит гены обеих родительских клеток. Особенностью клеток, образованных при половом размножении, является то, что у них наблюдается разнообразие признаков, благодаря соединению генов разных организмов. Это является основой эволюционных преобразований и появления новых видов бактерий. Изучены три способа образования рекомбинантов: трансформация, трансдукция и конъюгация. Рисунок 4. Схема конъюгации бактерий Роль бактерий в природе Бактерии распространены повсеместно: в воздухе, в воде, в почве, в живых организмах. Бактерии были обнаружены даже на дне океана на глубине нескольких километров, в термальных источниках, температура воды которых достигает 90 градусов, в нефтеносных пластах, то есть они способны существовать в таких условиях, где другие живые организмы не встречаются вообще. В 1 грамме чернозема содержится около 10 миллиардов бактерий. Они разлагают органические вещества, оставшиеся от мертвых животных и растений, которые поступают в грунт.
Бактерии эволюционировали в лаборатории?
Найди верный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Сервис вопросов и ответов по учебе для школьников и студентов Студворк №1009166. ответ на этот и другие вопросы получите онлайн на сайте Тело первых бактерий имело примитивное строение. Со временем структура микроорганизмов усложнилась, но и сейчас они являются наиболее примитивными одноклеточными организмами. Главной причиной необъяснимости случайного возникновения клетки теорией эволюции является «неупрощаемая комплексность» клетки.
Остались вопросы?
Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий. С точки зрения биомассы и количества видов, прокариоты являются наиболее представительной формой жизни на Земле. Бактерии как и все организмы прошли эволюционный путь развития с точки зрения эволюции они являются. а)высокоорганизованными б) организмами способными дать начало новой группе организмов в)примитивными г)не способными изменяться. пж дайте ответ.
Определение Бактерии
- Из Википедии — свободной энциклопедии
- какими организмами являются бактерии с точки зрения эволюции - Есть ответ на
- Общая биология, ответы на билеты
- Общие этапы эволюции микроорганизмов
Бактерии эволюционировали в лаборатории?
Однозначная и точная концепция вида бактерий так и не сформулирована. Это связано с невероятным разнообразием бактерий, широким распространением горизонтального переноса генов , невозможностью культивирования большинства бактерий и рядом других причин. Введение ПЦР и методов секвенирования в микробиологию позволило выделять виды бактерий на основании степени их сходства с геномами уже известных бактерий, однако и этот подход зачастую оказывается неэффективен из-за огромного разнообразия бактерий [151]. Помимо видов, при классификации бактерий иногда используют другие категории. К названию не до конца подтверждённых, а только предполагаемых видов добавляют слово Candidatus [152]. Многие виды подразделяются на так называемые штаммы — морфологические или генетические варианты подтипы бактерий в пределах одного вида. Однако ряд специалистов считает категорию «штамм» искусственной [153]. Взаимодействия с другими организмами[ править править код ] Основные бактериальные инфекции человека и их возбудители [154] [155] Несмотря на видимую простоту, бактерии могут вступать в сложные взаимоотношения с другими организмами. Такие симбиотические отношения можно подразделить на паразитизм , мутуализм и комменсализм , а также хищничество. Из-за небольших размеров бактерии-комменсалы распространены повсеместно и обитают на всевозможных поверхностях, в том числе на растениях и животных. Рост бактерий на теле человека ускоряется от тепла и пота , и их большие популяции придают запах телу [en].
Хищники[ править править код ] Некоторые бактерии убивают и поглощают другие микроорганизмы. К числу таких хищных бактерий [156] относится Myxococcus xanthus , формирующая скопления, которые убивают и переваривают любую попавшую на них бактерию [157]. Хищная бактерия Vampirovibrio chlorellavorus [en] прикрепляется к своей добыче, после чего постепенно переваривает её и всасывает высвобождающиеся питательные вещества [158]. Daptobacter проникает внутрь других бактериальных клеток и размножается в их цитозоле [159]. Вероятно, хищные бактерии произошли от сапрофагов , питающихся мёртвыми микроорганизмами, после того как приобрели приспособления для ловли и убийства других микробов [160]. Мутуалисты[ править править код ] Некоторые виды бактерий образуют скопления, которые необходимы для их выживания. Одна из таких мутуалистических ассоциаций, известная как межвидовая передача водорода, формируется между кластерами анаэробных бактерий, которые поглощают органические кислоты , такие как масляная и пропионовая кислоты , и выделяют водород, и метаногенными археями, которые используют водород. Бактерии из этой ассоциации не могут поглощать органические кислоты сами по себе, так как в ходе этой реакции образуется водород, накапливающийся вокруг. Только благодаря метаногенным археям концентрация водорода поддерживается достаточно низкой, чтобы позволить бактериям расти [161]. Многие бактерии являются симбионтами людей и других организмов.
У человека от бактерий полностью свободны только кровь и лимфа [162]. Например, более тысячи видов бактерий, входящих в состав нормальной кишечной микрофлоры человека, участвуют в работе иммунитета, синтезируют витамины например, фолиевую кислоту , витамин K и биотин , превращают сахара в молочную кислоту , а также сбраживают сложные неперевариваемые углеводы [163] [164] [165]. Кроме того, кишечная микрофлора подавляет размножение патогенных организмов за счёт конкурентного исключения. Полезные микроорганизмы кишечной микрофлоры часто продают в виде пробиотических пищевых добавок [166]. Бактерии вступают в сложные мутуалистические отношения с самыми разными животными. Например, в мезохиле [en] губок обитает множество бактерий, причём все исследованные к настоящему времени виды губок имеют симбиотические ассоциации с одним или более видами бактериальных симбионтов [167] [168] [169] [170]. Многие моллюски имеют особые светящиеся органы, которые светятся благодаря обитающим в них бактериям. Бактерии получают надёжную защиту и благоприятные условия для питания, а моллюскам свечение помогает в привлечении полового партнёра [171]. Асцидии вступают в симбиотические отношения с цианобактериями рода Prochloron [en] , который фиксирует CO2, а животное обеспечивает ему защищённое местообитание [172]. У жвачных животных в сложно устроенном желудочно-кишечном тракте обитает множество микроорганизмов, благодаря которым животные могут питаться почти что безбелковой пищей.
Разрушать целлюлозу способны лишь некоторые бактерии, в результате деятельности которых образуются органические кислоты муравьиная , уксусная , пропионовая , масляная , которые и усваиваются животными. Выделяющиеся углекислый газ и водород обитающие тут же метаногены превращают в метан. В одной из секций сложного желудка жвачных, рубце , обитают не только бактерии, разрушающие целлюлозу, но также бактерии, расщепляющие крахмал , пектин , полисахариды и пептиды , сбраживающие разнообразные сахара , спирты , аминокислоты и жирные кислоты [173].
И одна из причин, почему Африку так тяжело было завоевать или покорить. Европейская цивилизация развивалась в схожих климатических условиях. А когда вы движетесь с севера на юг, возникают новые климатические зоны с новыми микробами. То же самое в вытянутой с севера на юг Америке: майя, инки, ацтеки почти не общались друг с другом, потому что не могли пройти этот барьер — в новых природных условиях их убивали непривычные для их организма микробы. Антибиотики ведь не люди изобрели — это вещества, с помощью которых микробы общаются друг с другом. Ученые всегда изучали бактерий в чистой культуре определенного вида, но в природе такого не бывает: у любого места обитания свой микробиом, сообщество разных микробов, где все зависят друг от друга. У них сложные отношения, всё как у людей, хотя конечная цель каждого вида — победить, всё захватить. Но другие бактерии не дают — возникает какой-то баланс. Самая важная информация для бактерий — это есть ли еда, сколько вокруг других представителей твоего вида и других видов. Определяют они это с помощью механизма, который по-английски называется quorum sensing, — некоторые переводят это как «чувство локтя». В небольшом объеме среды каждая бактерия выпускает наружу какое-то вещество, которое ее собратья могут почувствовать. Если бактерий много, то и вещества будет много — они поймут, что здесь тесно и, вместо того чтобы размножаться как бешеные, образуют споры или биопленку. Так, например, происходит в легких больного муковисцидозом — микробы говорят другу: «Нам здесь стало очень тесно» и образуют пленки, а больной при этом умирает. Для таких сообщений им и нужны антибиотики. В природе антибиотики, как правило, не достигают такой концентрации, при которой убивают. А поскольку антибиотики были изобретены бактериями для общения между собой, то и гены устойчивости к антибиотикам возникли давным-давно, задолго до всяких врачей. Именно поэтому победить устойчивость к антибиотикам всё равно никогда не удастся. Гены устойчивости появились не потому, что злые бактерии вдруг решили наступить на горло нашей песне. Если вы возьмете образцы бактериальной ДНК из скважины, пробуренной в вечной мерзлоте, то, конечно, найдете гены устойчивости ко всем антибиотикам. Ведь бактерия, которая их производит, по определению к ним устойчива, то есть сама является источником антигенов. Война с микробами: антибиотики и бактериофаги [КШ] Что-то в последние десятилетия ничего не слышно о новых антибиотиках. Во-первых, до недавнего времени антибиотики, которые были, и так работали хорошо. Во-вторых, новые найти очень непросто. Золотой век антибиотиков закончился. Вот я, например, работаю в Институте микробиологии Ваксмана [подразделение Университета Ратгерса — КШ] , а Ваксман — это человек, который получил Нобелевскую премию за стрептомицин, которым изначально лечили туберкулез. Так вот, он отправлял своих друзей и сотрудников по городам и весям за образцами земли, потому что большинство антибиотиков производится почвенными бактериями: их там слишком много живет — вынуждены общаться. В институте, построенном на его Нобелевскую премию, эти почвенные бактерии до сих пор болтаются — работать там невозможно, потому что они всё перезаразили. Крупные фармкомпании тоже собирали образцы почвы по миру и потом из найденных в ней бактерий выделяли антибиотики. Выделяли-выделяли — так возникло большинство антибиотиков, но постепенно новые перестали появляться. Потому что количество культивируемых бактерий невелико. Для того чтобы выделять новые антибиотики, по-видимому, будет использоваться та самая геномика, которая позволяет смотреть генетическую информацию «темной материи» неизвестных бактерий. Биоинформатика может выделить кластеры генов, которые потенциально могут кодировать антибиотики, потом генные инженеры будут создавать специальные штаммы-продуценты. Собственно, этим и я занимаюсь — мы делаем предсказания: мол, такая-то бактерия, такие-то гены могут быть ответственны за производство таких-то веществ. Потом мы это вещество должны получить, поймать, охарактеризовать, выявить его структуру, показать, что это вещество действует на клетку, понять, как именно действует, почему оно проходит в клетку, почему убивает клетки и при этом не убивает ту клетку, которая его производит, как вещество делается. Но мы изучаем их с точки зрения механизмов действия, а не с точки зрения практического применения. Понимаете, найти какое-то вещество, которое убивает бактерию, несложно, таких веществ десятки тысяч. Проблема в том, что антибиотик не должен вызывать в клетках человека никаких разрушений. Еще вы должны будете доказать, что, если он попадет в кровь, то будет поглощаться и доставляться к источнику инфекции в требуемой концентрации. Он должен быть достаточно стабилен, его нужно произвести в больших количествах, и это должно быть экономически выгодно. С точки зрения промышленного производства всё это гораздо важнее, чем просто найти антибиотик. При среднем поцелуе партнеры обмениваются примерно 80 миллионами бактерий. Появляются новые болезни, бактерии быстро приобретают устойчивость к антибиотикам… [КС] Это, конечно, ужас, но не ужас-ужас-ужас. Прямо сейчас никто не вымирает. Новых болезней немного, а вот масса заболеваний, которые до недавних пор воспринимались как генетические или связанные с какими-либо дефектами, как выясняется, имеют бактериальную природу: от диабета до колитов и даже шизофрении — оказывается, чтобы завелись тараканы в голове, нужны кое-какие бактерии в животе. Взять те же антибиотики: если они очищают от микробов какую-то нишу, где те спокойно жили, там обязательно заводится кто-нибудь другой. Все-таки жизнь существует уже 3,5 миллиарда лет и научилась приспосабливаться ко всяким разностям. Особенно учитывая, что бактерии постоянно обмениваются своими генами и вирусами. А мы — та среда, в которой происходит их отбор. Когда среда меняется, меняются и они. Бактериям в этом смысле жить гораздо тяжелее, чем нам. Поскольку каждый бактериофаг специфичен к той бактерии, на которой паразитирует, они могут быть эффективнее, чем антибиотики. Бактериофаги открыли лет сто назад, и изначально именно их планировали использовать против бактерий. Но открытие антибиотиков позволило на время забыть про бактериофагов. Потом, правда, удрал, говорят, не поделил женщину с каким-то энкавэдэшником. Но институт остался, там же был завод, где делались таблетки, такие заводы и сейчас есть в Нижнем Новгороде и Перми. У советского солдата в личном пакетике всегда была таблетка интестифага. Кстати, большинство войн сегодня проигрывается, как и во времена Римской империи, не из-за поражений, а из-за поносов. Но он сам по себе вызывает иммунный ответ организма.
Таксономия Будучи дилетантом я всегда недоумевал по одному поводу — как можно классифицировать и систематизировать организмы, когда нет информации о ДНК, когда штаммы организмов еще не секвенированы? И пожалуйста Справочник Берджи только в последнем издании начал учитывать информацию о генах. А до этого учитывал только структурные и функциональные особенности бактерий. Я уже не говорю о тех биологах-консерваторах, которые заявляют на полном серьезе, что таксономия должна строится не только на основании геномного сравнения, но и на основании морфологических и физиологических данных. И это то в генный век мы должны возвращаться во времена К. А ведь при отсутствии более авторитетного издания, чем справочник Берджи, биоинформационные базы по таксономии, такие как в NCBI , хоть и являются более полными и иногда имеют ссылки на секвенированные штаммы — принцип построения такого дерева — это просто перепост справочника Берджи. Скажите не так… ок, найти отличие можно легко. Но вы никогда не поймете почему дерево именно такое какое оно есть. К тому или иному виду конечно приписано, кто дал такое имя таксону, и если повезет будет статья, и еще если сильно повезет в статье мельком будет описано почему этот таксон поместили так или иначе в систематике. Дальше если взять отдельные статьи по построению филогенетических деревьев — в них в лучшем случае рассматривается очень небольшое число видов, и строятся деревья совершенно не прозрачными методами и достаточно не большие. Проблема дилетанта Существует много профессионалов, которые пытаются представить дело так, что проблема дилетанта — это его недообученность и недоосведомленность. Это отчасти так, но только отчасти. Дилетанты занимаются не своим делом, потому что имея свою профессию — они также интересуются вещами другими и думают, в какой еще сфере они могут применять свои знания. И когда они видят примерно такое состояние как я описал выше для таксономии — они приходят в некоторое замешательство. Они берут самый наивный метод, так как им нужен результат, а не повод для написания статьи и строят дерево эволюции. Дальше профессионалы начинают возмущаться как же так — они занимаются этим профессионально, а результатов то нет… гранты не все использованы. Хотя можно взять и одному человеку все это построить без особых сложностей и не забивая голову методами, в которых введена сложность ради самой сложности. И вот так получается результат у дилетанта. Его можно обсуждать, но его можно обсуждать серьезно только тогда, когда у профессионалов будет хоть что-то сравнимое и столь же прозрачное. И вот теперь мы к этому перейдем. Многовидовое происхождение и прочие глупости Кто читал мои предшествующие статьи знает, что на эту тему я уже писал начиная со статьи Интересные результаты о эволюционной систематике прокариот или «многовидовое происхождение» , и не так давно дал более полные результаты в статье Систематика прокариот — дальние родственники. Здесь я хотел бы рассказать как менялось мое мировоззрение по мере продвижения этого исследования. Вначале в статье показывалось, что на основании одного вида тРНК, который переносил аланин можно найти устойчивую связь между разными видами, родами и т. Были и некоторые исключения, но их было сравнительно мало. Эту мысль мои критики почти не заметили тогда видимо списав на горизонтальный перенос — хотя сильно уж постоянным были связи мама-папа , но отметили что делать выводы на основании одного гена как то не серьезно. Я охотно согласился, но про себя подумал — а вы то сами сколько генов анализируете?
Бактерии в мутуалистических отношениях с другими организмами Многие бактерии находятся в мутуалистических и даже симбиотических отношениях с другими организмами. Растения, например, выделяют значительную долю созданной в процессе фотосинтеза органики поверхностью корней. Преобразованная таким образом часть почвы ризосфера благоприятна для развития бактерий, в том числе азотфиксирующих. Увеличение интенсивности азотфиксации называемой в таком случае ассоциативной улучшает условия минерального питания растений. Бактерии населяют желудочно-кишечный тракт животных и человека и необходимы для нормального пищеварения. Особенно они важны для травоядных, которые питаются не сколько растительной пищей, сколько продуктами её преобразования. В кишечнике человека в норме обитает от 300 до 1000 видов бактерий общей массой до 1 кг при том что численность их клеток на порядок превосходит численность клеток человеческого организма. Они играют важную роль в переваривании углеводов, синтезируют витамины, вытесняют патогенные бактерии.
Прокариоты (доядерные одноклеточные)
В почве бактерии, входящие в состав ризосферы , осуществляют фиксацию азота, превращая его в различные азотсодержащие соединения [175]. Они являются единственной усваиваемой формой азота для многих растений, которые сами не могут фиксировать азот. Множество бактерий обнаруживается на поверхности и внутри семян [176]. Патогены[ править править код ] Раскрашенное изображение клеток Salmonella typhimurium красные в культуре клеток человека, полученное с помощью сканирующей электронной микроскопии Бактерии, паразитирующие на других организмах, называют патогенами. Патогенные бактерии являются причиной множества человеческих смертей и вызывают такие инфекции, как столбняк , брюшной тиф , дифтерия , сифилис , холера , пищевые отравления , проказа и туберкулёз. Патоген, вызывающий заболевание, может быть описан много лет спустя после описания самой болезни, как, например, произошло с Helicobacter pylori и язвенной болезнью желудка.
Бактерии ответственны за многие болезни культурных растений бактериозы , в числе которых пятнистость листьев [177] , ожог плодовых культур и увядание. Бактериальную основу имеют такие заболевания домашнего скота , как паратуберкулёз , мастит , сальмонеллёз и сибирская язва [178] [179]. Каждый патоген характеризуется особыми взаимодействиями с организмом хозяина. Некоторые возбудители, такие как виды родов Staphylococcus и Streptococcus, вызывают кожные инфекции, пневмонию, менингит и даже сепсис , системный воспалительный ответ, переходящий в шок , массивную вазодилатацию сосудов и заканчивающийся смертью [180]. При этом те же самые микроорганизмы входят в состав нормальной микрофлоры человека и зачастую обитают на коже и внутри полости носа , не вызывая никакого заболевания.
Другие бактерии всегда вызывают болезнь, например, риккетсии , которые являются облигатными внутриклеточными паразитами и могут размножаться только внутри клеток организма-хозяина. Один вид риккетсий вызывает сыпной тиф , другой является возбудителем пятнистой лихорадки Скалистых гор. Другой род облигатных внутриклеточных паразитов, Chlamydia , включает возбудителей пневмонии, инфекций мочевыводящих путей и коронарной недостаточности [181]. Некоторые бактерии, такие как Pseudomonas aeruginosa , Burkholderia cenocepacia [en] и Mycobacterium avium , являются оппортунистическими патогенами и вызывают заболевания преимущественно у людей, страдающих от иммунодефицита или муковисцидоза [182] [183]. Бактериальные инфекции можно лечить антибиотиками, в числе которых выделяют бактерицидные препараты, которые убивают бактерии, и бактериостатики [en] , только подавляющие их рост.
Существует несколько классов антибиотиков, которые действуют на процессы, которые есть у бактерии-патогена, но нет у организма-хозяина. Так, антибиотики хлорамфеникол и пуромицин подавляют работу бактериальной рибосомы, но не действуют на эукариотические рибосомы [184]. Антибиотики используются не только в медицине, но и в животноводстве для стимуляции роста животных, что стало причиной повсеместного распространения устойчивости к антибиотикам в популяциях бактерий [185]. Некоторые бактерии, например, молочнокислые бактерии Lactobacillus и Lactococcus [en] , наряду с дрожжами и плесневыми грибками в течение нескольких тысяч лет использовались людьми для приготовления продуктов брожения, в числе которых сыры, квашеная капуста , соевый соус , уксус , вино и йогурт [186] [187]. Способность бактерий разлагать разнообразные органические соединения находит применение в переработке отходов и биоремедиации.
Бактерии, способные разрушать углеводороды нефти , часто используются для устранения разливов нефти [188]. После выброса нефти из танкера «Эксон Валдез» в 1989 году в проливе Принца Вильгельма на некоторых из близлежащих пляжей были разложены удобрения, чтобы способствовать росту бактерий, разрушающих углеводороды нефти. Эта мера оказалась эффективной для тех пляжей, на которых слой нефти был не слишком толстым. Бактерии также используют для биоремедиации промышленных токсичных отходов [en] [189]. В химической промышленности бактерии играют наиболее важную роль в производстве чистых энантиомеров химических соединений, которые используются в фармацевтике или агрохимии [190].
Бактерии можно использовать вместо пестицидов для биологической защиты растений. Наиболее часто для этих целей используется грамположительная почвенная бактерия Bacillus thuringiensis. Подвиды этой бактерии входят в состав инсектицидов , эффективных против чешуекрылых насекомых и известных под торговыми названиями Dipel и Thuricide [191]. Благодаря узкой специфичности такие пестициды считаются экологичными и безопасными для человека , диких животных , опылителей и других полезных насекомых [en] [192] [193]. Благодаря способности к быстрому росту и лёгкости манипуляций бактерии стали настоящими «рабочими лошадками» молекулярной биологии, генетики и биохимии.
Внося мутации в геномы бактерий и изучая получившиеся фенотипы , учёные могут определять функции генов, ферментов и метаболических путей у бактерий и далее экстраполировать полученные данные на более сложные организмы [194]. Для хорошо изученных бактерий, таких как E. Благодаря знаниям о метаболизме и генетике бактерий они могут использоваться в биотехнологии и биоинженерии для получения терапевтически важных белков, таких как инсулин , факторы роста и антитела [197] [198].
Интересно, что во время медленной стадии, которая длится миллиарды лет, за единицу времени меняется постоянное число фенотипических признаков. Словарь терминов Фенотип — совокупность наблюдаемых внешних признаков организма. Генотип — совокупность генов, характерных для организма. Приспособленность — способность выживать и оставлять потомство в определенных условиях. Дивергенция — расхождение в ходе эволюции признаков и свойств изначально родственных организмов.
Ортологичные гены — гомологичные гены, произошедшие от одного и того же предкового гена и, как правило, кодирующие продукты со сходными функциями. Синтетическая леталь — пара генов, одновременная мутация которых приводит к летальному фенотипу, а каждого по отдельности — нет. Пангеном — суммарный набор генов каждого вида, который можно подразделить на три части: универсальные гены есть у всех штаммов , периферические гены есть у большей части штаммов и штамм-специфичные, уникальные, гены. Изучать эволюцию фенотипов начали довольно давно. Самый известный пример подобных работ — классическое исследование Чарльза Дарвина о морфологической вариации клювов галапагосских вьюрков , ставшее основой для понимания естественного отбора. Несмотря на внушительный возраст вопроса, подобные исследования не только не потеряли актуальности, но перешли на качественно новый уровень [1]. Эволюционная значимость и физиологическая роль фенотипических признаков меняется со временем. Оперируя большими эволюционными периодами, сложно связать генотип, фенотип и приспособленность организма.
Особенно трудно это сделать для многоклеточных организмов из-за огромного числа фенотипических признаков. У микроорганизмов же всё немного проще. Фенотипическим признаком, например, можно считать способность или неспособность расти на тех или иных источниках углерода. Конечно, это не единственный класс фенотипических признаков микроорганизмов, однако такой метаболический «портрет» всегда определяет стиль жизни микробов и вносит весомый вклад в их общую приспособленность. Сейчас для исследования метаболических предпочтений бактерий совсем не обязательно выращивать их в лаборатории на всевозможных субстратах. Имея только геномные данные, можно довольно точно предсказать метаболический фенотип микроорганизма исключительно in silico.
На вопросы могут отвечать также любые пользователи, в том числе и педагоги.
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.
Рептилии, в свою очередь, дают начало млекопитающим и птицам. На заре своего эволюционного развития млекопитающие были представлены небольшим числом видов, в то время процветали рептилии.
Позднее резко увеличивается число видов млекопитающих и птиц и исчезает большинство видов рептилий. Таким образом, палеонтологические данные указывают на смену форм животных и растений во времени. Химический состав клетки Сходство в строении и химическом составе у разных клеток свидетельствует о единстве их происхождения.
По содержанию элементы, входящие в состав клетки, можно разделить на 3 группы: 1. Они составляют основную массу вещества клетки. К макроэлементам относят также элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента.
Это, например, такие элементы, как калий, магний, натрий, кальций, железо, сера, фосфор, хлор. К ним относятся преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. Ультра микроэлементы.
К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие элементы. Роль ряда ультра микроэлементов в организме еще не уточнена или даже неизвестна мышьяк. При недостатке этих элементов могут нарушаться обменные процессы.
Молекулярный состав клетки сложен и разнороден. Неорганические соединения — вода и минеральные вещества — встречаются также в неживой природе; другие — органические соединения углеводы, жиры, белки, нуклеиновые кислоты и др. Минеральные соли.
Большая часть неорганических веществ в клетке находится в виде солей — либо диссоциированных на ионы, либо в твердом состоянии. Концентрация различных ионов неодинакова в различных частях клетки и особенно в клетке и окружающей среде. Так, концентрация ионов натрия всегда во много раз выше во внеклеточной среде, чем в клетке, а ионы калия и магния концентрируются в значительно большем количестве внутри клетки.
От концентрации солей внутри клетки зависят буферные свойства цитоплазмы, то есть способность клетки сохранять определенную концентрацию водородных ионов. Роль воды в живой системе — клетке За очень немногими исключениями кость и эмаль зуба , вода является преобладающим компонентом клетки. Вода необходима для метаболизма обмена клетки, так как физиологические процессы происходят исключительно в водной среде.
Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.
Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка.
Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты. Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке.
Содержание воды в организме зависит от его возраста и метаболической активности. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Вода — основное средство перемещения веществ в организме ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений и в клетке.
Вода служит УсмазочнымФ материалом, необходимым везде, где есть трущиеся поверхности например, в суставах. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.
Критерии вида. Видом считают совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенную область — ареал... Конкретные положения — критерии позволяют отличить один вид от другого.
В основе морфологического критерия лежит сходство внешнего и внутреннего строения особей одного вида. Но особи в пределах вида иногда настолько изменчивы, что только по морфологическому критерию не всегда удается определить вид. Вместе с тем существуют виды, морфологически сходные, однако особи таких видов не скрещиваются между собой.
Это — виды-двойники, которые исследователи открывают во всех систематических группах. Например, у черных крыс два вида-двойника —с 38 и 42 хромосомами. Открыли 6 видов-двойников малярийного комара, раньше считавшихся одним видом.
Таким образом, одни морфологические признаки не обеспечивают выделения вида. Для определения вида важное значение имеет генетический критерий", имеется в виду набор хромосом, свойственный конкретному виду. Виды обычно отличаются по числу хромосом или по особенностям их строения, поэтому генетический критерий достаточно надежен.
Однако и он не абсолютен. Встречаются случаи, когда виды имеют практически неразличимые по строению хромосомы. Кроме того, в пределах вида могут быть широко распространены хромосомные мутации, что затрудняет его точное определение.
В основе физиологического критерия лежит сходство всех процессов жизнедеятельности особей одного вида, прежде всего сходство размножения. Представители разных видов, как правило, не скрещиваются, или потомство их бесплодно. Не скрещиваемость видов объясняется различиями в строении полового аппарата, сроках размножения и др.
Однако в природе есть виды, которые скрещиваются и дают плодовитое потомство некоторые виды канареек, зябликов, тополей, ив. Следовательно, физиологический критерий недостаточен для определения видовой принадлежности особей. Географический критерий — это определенный ареал, занимаемый видом в природе.
Он может быть большим или меньшим, прерывистым или сплошным. Есть виды, распространенные повсеместно и нередко в связи с деятельностью человека многие виды сорных растений, насекомых-вредителей. Географический критерий также не может быть решающим.
Основа экологического критерия — совокупность факторов внешней среды, в которой существует вид. Например, лютик едкий распространен на лугах и полях; в более сырых местах растет лютик ползучий; по берегам рек и прудов, на болотистых местах встречается лютик жгучий прыщинец. В настоящее время ученые разработали и другие критерии вида, которые позволяют точнее определить место вида в системе органического мира по различию белков и нуклеиновых кислот.
Для установления видовой принадлежности недостаточно использовать какой-нибудь один критерий; только совокупность их, взаимное подтверждение правильно характеризует вид. Популяция — единица вида и эволюции Каждый вид характеризуется определенным ареалом — территорией обитания. Внутри ареала могут быть самые разнообразные преграды реки, горы, пустыни и т.
Совокупность свободно скрещивающихся особей одного вида, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, называютпопуляцией. Таким образом, вид состоит из популяций. Каждая популяция занимает определенную территорию часть ареала вида.
В течение многих поколений, за продолжительное время популяция успевает накопить те аллели, которые обеспечивают высокую приспособленность особей к условиям данной местности. Так как из-за разницы условий естественному отбору подвергаются различные комплексы генов аллелей , популяции одного вида генетически неоднородны. Они отличаются друг от друга частотой встречаемости тех или иных аллелей.
По этой причине в разных популяциях одного вида один и тот же признак может проявляться по-разному. Например, северные популяции млекопитающих обладают более густым мехом, а южные чаще темно-окрашенные. В зонах ареала, где граничат разные популяции одного вида, встречаются как особи контактирующих популяций, так и гибриды.
Таким образом осуществляется обмен генами между популяциями и реализуются связи, обеспечивающие генетическое единство вида. Обмен генами между популяциями способствует большей изменчивости организмов, что обеспечивает более высокую приспособленность вида в целом к условиям обитания. Иногда изолированная популяция в силу различных случайных причин наводнение, пожар, массовое заболевание и недостаточной численности может полностью погибнуть.
Таким образом, каждая популяция эволюционирует независимо от других популяций того же вида, обладает собственной эволюционной судьбой. Популяция — наименьшее подразделение вида, изменяющееся во времени. Вот почему популяция представляет собой элементарную единицу эволюции.
Начальный этап эволюционных преобразований популяции — от возникновения наследственных изменений до формирования адаптаций и возникновения новых видов — называют микро эволюцией БИЛЕТ 3 Органические соединения. Белки — обязательная составная часть всех клеток. В жизни всех организмов белки имеют первостепенное значение.
В состав белка входят углерод, водород, азот, некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность.
Между соединившимися аминокислотами возникает связь называемая пептидной, а образовавшееся соединение нескольких аминокислот называют пептидом. Соединение из большого числа аминокислот называют полипептидом. В белках встречаются 20 аминокислот, отличающихся друг от друга своим строением.
Разные белки образуются в результате соединения аминокислот в разной последовательности. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся у них белков. В строении молекул белков различают четыре уровня организации: Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными прочными пептидными связями.
Вторичная структура — полипептидная цепь, закрученная в виде спирали. В ней между соседними витками возникают мало прочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается мало прочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность.
Третичная структура белков поддерживается также ковалентными S-S-связями возникающими между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина. Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура. Если пептидные цепи уложены в виде клубка, то такие белки называются глобулярными.
Если полипептидные цепи уложены в пучки нитей, они носят название фибриллярных белков. Нарушение природной структуры белка называют денатурацией. Она может возникать под действием высокой температуры, химических веществ, радиации и т.
Денатурация может быть обратимой частичное нарушение четвертичной структуры и необратимой разрушение всех структур. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. При недостатке углеводов или жиров окисляются молекулы аминокислот.
Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. Такие системы вносили некоторую упорядоченность, но не отражали родственных связей между организмами. Вершиной искусственной систематики явилась система, разработанная шведским натуралистом Карлом Линнеем 1707-1778 Его основные работы посвящены проблемам систематики растений.
В предложенной К. Линнеем системе классификации было принято деление растений и животных на несколько соподчиненных групп: классы, отряды, роды, виды и разновидности. Им была узаконена бинарная, или двойная, номенклатура видовых названий.
Согласно бинарной номенклатуре, наименование вида состоит из родового названия и видового эпитета: пшеница мягкая, пшеница твердая и т. Недостатки системы Линнея состояли в том, что при классификации он учитывал лишь 1-2 признака у растений число тычинок, у животных строение дыхательной и кровеносной систем , не отражающих подлинного родства, поэтому далекие роды оказывались в одном классе, а близкие — в разных. Работы К.
Линнея сыграли важную роль в развитии биологии и способствовали формированию исторического взгляда на природу. Действительно, применение бинарной номенклатуры способствует формированию представлений о родстве форм в пределах рода, а соподчиненность таксономических единиц в конце концов приводят к мысли об общности происхождения органических форм. Французский биолог Жан-Батист Ламарк в 1809 году выдвинул гипотезу о механизме эволюции, в основе которой лежали две предпосылки: упражнение и не упражнение частей организма и наследование приобретенных признаков.
Изменения среды, по его мнению, могут вести к изменению форм поведения, что вызовет необходимость использовать некоторые органы или структуры по-новому или более интенсивно или, наоборот, перестать ими пользоваться. В случае интенсивного использования эффективность и или величина органа будет возрастать, а при не использовании может наступить дегенерация и атрофия. Эти признаки, приобретенные индивидуумом в течение его жизни, согласно Ламарку, наследуются, то есть передаются потомкам.
С точки зрения ламаркизма, длинная шея и ноги жирафа — результат того, что многие поколения его некогда коротконогих и короткошеих предков питались листьями деревьев, за которыми им приходилось тянуться все выше и выше. Незначительное удлинение шеи и ног, происходившее в каждом поколений, передавалось следующему поколению, пока эти части тела не достигли своей нынешней длины. Хотя теория Ламарка способствовала подготовке почвы для принятия эволюционной концепции, его взгляды на механизм изменения никогда не получали широкого признания.
Однако Ламарк был прав, подчеркивая роль условий жизни в возникновении фенотипических изменений у данной особи. Например, занятия физкультурой увеличивают объем мышц, но хотя эти приобретенные признаки затрагивают фенотип, они не являются генетическими и, не оказывая влияние на генотип, не могут передаваться потомству. Разрабатывая систематику животных, Ламарк совершенно правильно подметил основное направление эволюционного процесса — постепенное усложнение организации от низших форм к высшим градация.
Но причиной градации Ламарк считал заложенное всевышним стремление организмов к совершенствованию, что в корне неверно. Выдающаяся заслуга Ламарка заключается в создании первого эволюционного учения. Он отверг идею постоянства видов, противопоставив ей представление об изменяемости видов.
Его учение утверждало существование эволюции как исторического развития от простого к сложному. Впервые был поставлен вопрос о факторах эволюции. Ламарк совершенно правильно считал, что условия среды оказывают важное влияние на ход эволюционного процесса.
Он был одним из первых, кто верно оценил значение времени в процессе эволюции и отметил чрезвычайную длительность развития жизни на Земле. Однако Ламарк допустил серьезные ошибки прежде всего в понимании факторов эволюционного процесса, выводя их из якобы присущего всему живому стремления к совершенству. Он также неверно понимал причины возникновения приспособленности, прямо связывал их с влиянием условий окружающей среды.
Это породило очень распространенные, но научно совершенно не обоснованные представления о наследовании признаков, приобретаемых организмами под непосредственным воздействием среды. Основные положения эволюционного учения Ч. Дарвина Выделяют такие факторы эволюционного процесса: наследственная изменчивость, естественный отбор, дрейф генов, изоляция, миграция особей и др.
Основные принципы эволюционного учения Ч. Дарвина сводятся к следующим положениям: 1. Каждый вид способен к неограниченному размножению.
Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства. Гибель или успех в борьбе за существование носят избирательный характер.
Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, то есть лучше приспособлены. Избирательное выживание размножение наиболее приспособленных организмов Ч.
Дарвин назвал естественным отбором. Под действием естественного отбора находящиеся в разных условиях группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Они приобретают настолько существенные отличия, что превращаются в новые виды принцип расхождения признаков.
Эволюционная теории Дарвина совершила переворот в биологической науке. На основе изучения гигантского материала, собранного во время путешествия на корабле УБиглФ, Дарвину удается вскрыть причины изменения видов. Изучив геологию Южной Америки, Дарвин убедился в несостоятельности теории катастроф и подчеркнул значение естественных факторов в истории земной коры и ее животного и растительного населения.
Благодаря палеонтологическим находкам он отмечает сходство между вымершими и современными животными Южной Америки. Он находит так называемые переходные формы, которые совмещают признаки нескольких современных отрядов. Таким образом был установлен факт преемственности между современными и вымершими формами.
На Галапагосских островах он нашел нигде более не встречающиеся виды ящериц, черепах, птиц. Они близки к южноамериканским. Галапагосские острова имеют вулканическое происхождение, и поэтому Ч.
Дарвин предположил, что виды попали на них с материка и постепенно изменились. В Австралии его заинтересовали сумчатые и яйцекладущие, которые вымерли в других местах земного шара.
Содержание
- Морфология бактерий
- Долгая счастливая фенотипическая эволюция бактерий
- Прокариоты на сайте Игоря Гаршина. Доядерные одноклеточные микроорганизмы
- Прокариоты: у подножья пирамиды жизни. Интервью с чл.-корр. РАН Е.А. Бонч-Осмоловской
- Другие вопросы:
- Почему, обладая примитивной организацией, бактерии сохранились в
Вирусы как эволюционный фактор
Они по-прежнему могут обмениваться генетической информацией между людьми посредством трансдукции , трансформации или конъюгации. Процесс эволюции бактерий Бактерии эволюционируют так же, как и другие организмы. Это происходит в процессе естественного отбора , посредством которого полезные адаптации передаются будущим поколениям до тех пор, пока этот признак не станет общим для всей популяции. Однако бактерии размножаются посредством бинарного деления, которое является формой бесполого размножения , что означает, что дочерняя клетка и родительская клетка генетически идентичны. Это делает бактерии восприимчивыми к воздействию окружающей среды. Это преодолевается путем обмена генетической информацией путем трансдукции, трансформации или конъюгации. Это позволяет эволюционировать новым генетическим и физическим приспособлениям, позволяя бактериям адаптироваться к окружающей среде и развиваться. Кроме того, бактерии могут воспроизводиться всего за 20 минут, что позволяет быстро адаптироваться, а это означает, что новые штаммы бактерий могут быстро развиваться.
Более совершенная филогенетическая естественная классификация объединяет родственные формы, исходя из общности их происхождения. Такой подход стал возможным после выбора в качестве универсального маркера гена 16S рРНК и появления методов определения и сравнения нуклеотидных последовательностей. Ген, кодирующий 16S рРНК входит в состав малой субчастицы прокариотической рибосомы , присутствует у всех прокариот, характеризуется высокой степенью консервативности нуклеотидной последовательности, функциональной стабильностью. Наиболее употребимой является классификация, публикуемая в периодическом издании определителя Берджи Бэрджи; Берги. По одной из существующих систем организмов, бактерии вместе с археями составляют парафилетическую группу организмов. Многие исследователи рассматривают их как домен или надцарство , наряду с доменами или надцарствами архей и эукариот. В пределах домена наиболее крупными таксонами бактерий являются следующие типы: протеобактерии , включающие 6 классов и 43 порядка; актинобактерии 1 класс и 10 порядков и фирмикуты 6 классов и 9 порядков по данным на 2022. Кроме того, выделяются таксономические категории более низкого ранга: семейства, роды, виды и подвиды. Описано не более 5 тыс. Значение бактерий Бактерии являются самыми древними организмами, появившимися около 3,5 млрд лет назад в архее. Около 2,5 млрд лет они доминировали на Земле, формируя биосферу , участвовали в образовании кислородной атмосферы. После появления многоклеточных организмов между ними и бактериями образовались многочисленные связи, включая преобразование органических веществ органотрофами, и разного рода симбиотические отношения, паразитизм , иногда внутриклеточный риккетсии , и патогенез. Наличие бактерий и других микроорганизмов в естественных местах обитания является важнейшим фактором, определяющим целостность экологических систем. В экстремальных условиях, непригодных для существования других организмов, бактерии могут представлять единственную форму жизни. Бактерии активно участвуют в биогеохимических циклах на нашей планете в том числе в круговороте большинства химических элементов. Современная геохимическая деятельность бактерий имеет также глобальный характер. Основная часть парникового газа — метана , поступающего в атмосферу, образуется метаногенами. Бактерии являются ключевым фактором почвообразования, зон окисления сульфидных и серных месторождений, образования железных и марганцевых осадочных пород и т. Некоторые бактерии вызывают тяжёлые заболевания у человека, животных и растений. Нередко они становятся причиной порчи сельскохозяйственной продукции, разрушения подземных частей зданий, трубопроводов, металлических конструкций шахт, подводных сооружений и т. Изучение особенностей жизнедеятельности этих бактерий позволяет разработать эффективные способы защиты от вызываемых ими повреждений. В то же время положительную роль бактерий для человека невозможно переоценить. С помощью бактерий получают вино, молочные продукты, закваски и другие продукты, ацетон и бутанол , уксусную и лимонную кислоты , некоторые витамины , ряд ферментов, антибиотики и каротиноиды ; бактерии участвуют в трансформации стероидных гормонов и других соединений. Их используют для получения белка в том числе ферментов и ряда аминокислот. Применение бактерий для переработки сельскохозяйственных отходов в биогаз или этанол даёт возможность создания принципиально новых возобновляемых энергетических ресурсов. Бактерии используют для извлечения металлов в том числе золота , увеличения нефтеотдачи пластов. Благодаря бактериям и плазмидам стало возможным развитие генетической инженерии. Изучение бактерий сыграло огромную роль в становлении многих направлений биологии , в медицине , агрономии и др.
К надцарству эукариот относятся царства растений, животных и грибов. Левенгуком в конце 17 в. Это мешало пониманию связи прокариот с возникновением и распространением болезней, препятствуя одновременно разработке адекватных лечебных и профилактических мероприятий. Пастер первым установил, что бактерии происходят только от других живых бактерий и могут вызывать определенные заболевания. В конце 19 в. Кох и другие ученые значительно усовершенствовали методы идентификации этих патогенов и описали множество их видов.
В неблагоприятных условиях бактерии образуют споры, служащие для сохранения вида. Они очень устойчивы к колебаниям температур, высыханию и т. Полезный совет Когда организм получает наследственный материал от своего предка, говорят о вертикальном переносе генов. Такой механизм играет ведущую роль в эволюции жизни на Земле и появлении разнообразных форм живого. Совет полезен?
ANCIENT PROCARIOTES: ORIGIN, EVOLUTIONARY PATH AND ROLE IN EARTH''S HISTORY (REVIEW)
- Прокариоты на сайте Игоря Гаршина. Доядерные одноклеточные микроорганизмы
- Знятие 1. Введение в биологию | VK
- Эволюция бактерий
- На каком пути эволюционного развития находятся бактерии в настоящее время? - Универ soloBY
- Настоящее разнообразие жизни: что умеют бактерии — все самое интересное на ПостНауке