Низкий уровень экспрессии белка теплового шока 47 (HSP47), который отвечает за активацию тромбоцитов коллагеном и тромбином, спасает медведей в спячке от тромбоза. Новости и СМИ. Обучение.
Что такое белки теплового шока
Низкий уровень экспрессии белка теплового шока 47 (HSP47), который отвечает за активацию тромбоцитов коллагеном и тромбином, спасает медведей в спячке от тромбоза. Вероятно, именно поэтому белки теплового шока обнаружены во всех организмах от бактерий до человека и относятся к группе наиболее консервативных белков. ность и сложность состава низкомолекулярных (15—30 кДа) полипептидов, негомологичных соответствующим БТШ других организмов. Для справки: Белки теплового шока (Hsp 70) могут использоваться для коррекции нейродегенеративных заболеваний, а также последствий инсультов, инфарктов и нарушений периферического кровообращения. Белки теплового шока (heat shock proteins, HSP) – класс белков, синтез которых повышается в ответ на стрессовое воздействие.
«Космическое» российское лекарство от всех видов рака будет доступным
Образовавшийся тромб может оторваться от стенки сосуда и циркулировать по венозной системе, где он в виде эмбола может закупорить более мелкие сосуды: наиболее опасно это в легочной артерии. При этом известно, что некоторые млекопитающие, такие как бурые медведи Ursus arctos , впадают в зимнюю спячку, где на протяжении многих месяцев могут практически не двигаться. При этом венозных тромбозов и тромбоэмболий у них не возникает. Ученые из Мюнхенского университета имени Людвига и Максимилиана под руководством Тобиаса Петцольда Tobias Petzold решили разобраться, как медведям и другим млекопитающим удается избежать образования тромбов во время длительной спячки. Для этого они исследовали бурых медведей во время их активной жизнедеятельности и во время спячки. Во время спячки ученые не обнаружили у медведей эхокардиографических признаков тромбоэмболии легочной артерии, а уровень D-димера у них был значительно ниже по сравнению с бодрствующим медведями. При этом у некоторых медведей во время бодрствования случались венозные тромбозы по механизму, схожему с человеческим. Чтобы выявить факторы, которые непосредственно участвуют в естественном механизме защиты от тромбозов во время зимней спячки, ученые отловили 13 молодых бурых медведей, за которыми они следили зимой во время спячки и в теплое время года во время бодрствования в Швеции. Сначала зоологи провели оценку гематологических показателей медведей. По повышенным уровням гемоглобина и гематокрита ученые выявили обезвоживание у медведей во время спячки. При оценке свертывающей функции крови ученые обнаружили, что во время спячки время образования сгустка при активации внутреннего пути свертывания увеличивается по сравнению с бодрствующими особями.
Упругость сгустка была незначительно снижена в зимнее время.
Издатель в течение срока действия Договора не несет ответственность за несанкционированное использование третьими лицами данных, предоставленных Автором. Права и обязанности Сторон 5. Автор имеет право: передавать третьим лицам электронную копию опубликованной Статьи, предоставленную ему Издателем согласно п. Издатель обязуется: опубликовать в печатной и электронной форме Статью Автора в Журнале в соответствии с условиями настоящего Соглашения; по решению Редакции Журнала, в случае необходимости, предоставить Автору корректуру верстки Статьи и внести обоснованную правку Автора; предоставить Автору электронную копию опубликованной Статьи на электронный адрес Автора в течение 15 рабочих дней со дня выхода номера Журнала в свет; соблюдать предусмотренные действующим законодательством права Автора, а также осуществлять их защиту и принимать все необходимые меры для предупреждения нарушения авторских прав третьими лицами. Рукопись материальный носитель , направляемая Автором в Редакцию Журнала, возврату не подлежит.
Редакция Журнала в переписку по вопросам отклонения Статьи Редколлегией Журнала не вступает; временно приостановить оказание Автору услуг по Соглашению по техническим, технологическим или иным причинам, препятствующим оказанию услуг, на время устранения таких причин; приостановить оказание услуг по Соглашению в одностороннем внесудебном порядке в случаях: если Статья не соответствует тематике Журнала или какой-либо его части , либо представленный материал недостаточен для самостоятельной публикации, либо оформление Статьи не отвечает предъявляемым требованиям; нарушения Автором иных обязательств, принятых в соответствии с Офертой; вносить изменения в Оферту в установленном Офертой порядке. Во всех случаях, не оговоренных и не предусмотренных в настоящем Соглашении, Стороны обязаны руководствоваться действующим законодательством Российской Федерации. Акцепт Оферты и заключение Соглашения. Срок действия Соглашения 6. Настоящее Соглашение вступает в силу с момента его заключения, когда Автор производит Акцепт Оферты посредством отправки заявки Издателю — Загрузки Статьи, и действует в течение 5 лет. Акцепт Оферты Автором создает Соглашение, заключенное в письменной форме статьи 438 и 1286.
Если ни одна из Сторон не направит другой Стороне письменное уведомление о расторжении Соглашения не позднее, чем за два месяца до окончания предписанного пятилетнего срока, то срок действия прав Издателя на Произведения автоматически пролонгируется на аналогичный срок. Количество пролонгаций не ограничено. Срок действия Соглашения не может превышать срок действия исключительных прав на Статью в соответствии с законодательством РФ. При передаче отчуждении исключительного права на произведение Автором третьему лицу действие настоящего Соглашения не прекращается. Порядок изменения и расторжения Соглашения 7. Издатель вправе в одностороннем порядке изменять условия настоящего Соглашения, предварительно, не менее чем за 10 десять календарных дней до вступления в силу соответствующих изменений, известив об этом Автора через сайт Журнала или путем направления извещения посредством электронной почты на адрес электронной почты Автора, указанный в Заявке Автора.
Изменения вступают в силу с даты, указанной в соответствующем извещении. В случае несогласия Автора с изменениями условий настоящего Соглашения Автор вправе направить Издателю письменное уведомление об отказе от настоящего Соглашения путем загрузки уведомления в сетевую электронную систему приема статей на рассмотрение, размещенную в соответствующем разделе сайта Журнала по URL: voprosyonkologii. Настоящее Соглашение может быть расторгнуто досрочно: по соглашению Сторон в любое время; по иным основаниям, предусмотренным настоящим Соглашением. Автор вправе в одностороннем порядке отказаться от исполнения настоящего Соглашения, направив Издателю соответствующее уведомление в письменной форме не менее чем за 60 шестьдесят календарных дней до предполагаемой даты публикации статьи Автора в Журнале. Прекращение срока действия Соглашения по любому основанию не освобождает Стороны от ответственности за нарушения условий Соглашения, возникшие в течение срока его действия. Ответственность 8.
За неисполнение или ненадлежащее исполнение своих обязательств по Соглашению Стороны несут ответственность в соответствии с действующим законодательством РФ. Все сведения, предоставленные Автором, должны быть достоверными. Автор отвечает за достоверность и полноту передаваемых им Издателю сведений. При использовании недостоверных сведений, полученных от Автора, Издатель не несет ответственности за негативные последствия, вызванные его действиями на основании предоставленных недостоверных сведений. Автор самостоятельно несет всю ответственность за соблюдение требований законодательства РФ о рекламе, о защите авторских и смежных прав, об охране товарных знаков и знаков обслуживания, о защите прав потребителей.
В ходе семинара с докладом «Биохимия клеточного стресса» выступил руководитель лаборатории изучения биохимических маркеров риска ХНИЗ имени Н. Перовой отдела фундаментальных и прикладных аспектов ожирения к. Тимофеев Ю.
Вы также можете задать новый вопрос, и через некоторое время наши врачи на него ответят. Это бесплатно. Также можете поискать нужную информацию в похожих вопросах на этой странице или через страницу поиска по сайту.
Белок теплового шока - Heat shock protein
Рекламировать товары и услуги Сайта, если Пользователь изъявит на то своё согласие. Предоставить Пользователю доступ на Сайт, помогая ему тем самым получать продукты, обновления и услуги. Процедура обработки может проводиться любым предусмотренным законодательством способом. В частности, с помощью информационных систем персональных данных, которые могут вестись автоматически либо без средств автоматизации. Обработанные Администрацией сайта персональные данные Пользователя могут передаваться третьим лицам, в число которых входят курьерские службы, организации почтовой связи, операторы электросвязи. Делается это для того, чтобы выполнить заказ Пользователя, оставленный им на Сайте, и доставить товар по адресу. Согласие Пользователя на подобную передачу предусмотрено правилами политики Сайта. Также обработанные Администрацией сайта персональные данные могут передаваться уполномоченным органов государственной власти Российской Федерации, если это осуществляется на законных основаниях и в предусмотренном российским законодательством порядке. Если персональные данные будут утрачены или разглашены, Пользователь уведомляется об этом Администрацией сайта. Все действия Администрации сайта направлены на то, чтобы не допустить к персональным данным Пользователя третьих лиц за исключением п. Последним эта информация не должна быть доступна даже случайно, дабы те не уничтожили её, не изменили и не блокировали, не копировали и не распространяли, а также не совершали прочие противозаконные действия.
Для защиты пользовательских данных Администрация располагает комплексом организационных и технических мер. Если персональные данные будут утрачены либо разглашены, Администрация сайта совместно с Пользователем готова принять все возможные меры, дабы предотвратить убытки и прочие негативные последствия, вызванные данной ситуацией. Обновление и дополнение предоставляемых им сведений в случае изменения таковых. В обязанности Администрации сайта входит: Применение полученных сведений исключительно в целях, обозначенных в п.
Эти микоплазмы, а также родственные им фитоплазмы представляют значительную угрозу для растениеводства, поскольку средой обитания для них служат сельскохозяйственно значимые растения. В перспективе данный белок может использоваться в качестве мишени для лекарственных препаратов, защищающих растения. Набор микрофотографий, иллюстрирующих эффект влияния малого белка теплового шока и белка деления FtsZ в пучки при разных температурных условиях Ахолеплазму относят к классу бактерий Mollicutes. Это одни из самых маленьких микроорганизмов в мире, способных к самостоятельному воспроизведению без участия систем организма-хозяина. Бактерии вида Acholeplasma laidlawii — единственные из микоплазм, которые могут жить свободно в почве или воде, однако в основном они паразитируют на растениях и животных. В частности, ахолеплазма поражает значимые для сельского хозяйства растения, такие как рис и горох посевной. Жизнедеятельность данных бактерий может приводить к значительным потерям урожая. При этом ахолеплазма, как и другие микоплазмы и фитоплазмы, демонстрирует устойчивость к ряду антибактериальных препаратов, которые широко применяются в сельском хозяйстве для защиты растений.
Белки теплового шока HSPs. Эффекты врожденного иммунитета в ответ на HSPs Белки теплового шока heat shok proteins HSPs широко распространены в живой природе и являются одними из наиболее консервативных молекул биосферы. Основная функция HSPs — защита биологических систем от повреждающих стрессорных воздействий. В процессе эволюции эукариот некоторые HSPs приобрели функции, позволившие им интегрироваться в систему иммунитета. Белки теплового шока обеспечивают важные жизненные функции и представлены у всех живых организмов. Продукты генов, наименованные белками теплового шока или белками клеточного стресса, вырабатываемые в условиях гипертермии, изначально были идентифицированы как молекулы, вырабатываемые в ответ на присутствие в клетках белков с нарушенной конформацией. Затем было установлено, что HSPs играют роль шаперонов в нековалентной сборке и демонтаже других макромолекулярных структур, хотя сами не являются перманентными компонентами этих структур при выполнении своих биологических функций. Реакция белков теплового шока зафиксирована не только в условиях гипертермии, но также при оксидативном стрессе, ацидозе, ишемии, гипоксии-гипероксии, энергетическом истощении клеток и т п. В этих условиях HSPs высвобождаются из некротизированных клеток при разрушении ткани или лизисе инфицированных клеток.
Heat shock protein and the immune response. Lydyard P. Heat shock proteins: immunity and immunopathology. Birnbaum G. Heat shock proteins and experimental autoimmune encephalomyelitis II: environmental infection and extra-neuraxial inflammation after the course of chronic relapsing encephalomyelitis. Georgopoulos C. Heat shock protein in multiple sclerosis and other autoimmune diseases. Нillon V. Rewiev: heat shock proteins and systemic lupus erythematosus. Jorgensen C. Gastric administration of recombinant 65kDa heat shock protein delays the severe of type II collagen induced arthritis in mice. Lang A. Heat shock protein 60 is released in immune-mediated glomerulonephritis and aggravates disease: in vivo evidence for an immunologic danger signal. Trieb К. Heat shock protein expression in the transplanted human kidney. Transplant International. Мухин Н. Амилоидоз и антитела к белкам теплового шока. Van Eden W. Cloning of the mycobacterial epitope recognized by T lymphocyte in adjuvant arthritis. Anderton S. Activation of T cells recognizing self 60-kDa heat shock protein can protect against experimental arthritis. Zanin-Zhorov A. Vabulas R. Detanico T. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol. Caldas C. Cellular autoreactivity against heat shock protein 60 in renal transplant patients: peripheral and graftinfiltrating responses. Dodd S. Expression of heat shock protein epitopes in renal disease. Clinical Nephrology. Venkataseshan V. Marzec L. Expression of Hsp 72 protein in chronic kidney disease patients. Scandinavian J. Samali A. Heat shock proteins increase resistance to apoptosis. McMillan D. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heatinduced apoptosis. Beck F-X. Molecular chaperones in the kidney: distribution, putative roles and regulation. Physiol, Renal. Farman N. Immunolocalisation of gluco-and mineralocorticoid receptors in rabbit kidney. Ramirez V. Radicolol, a heat shock inhibitor, reduces glomerular filtration rate. Morita K. Ohtani H. Induction and intracellular localization of 90-kDa heat-shock protein in rat kidneys with acute gentamycin nephropathy. Komatsuda A. Renal localization of the constitutive 73-kDa heat-shock protein in normal and PAN rats. Dinda A. Heat shock protein HSP expression and proliferation of tubular cells in end stage renal disease with and without haemodialysis. Expression of 90-kDa heat-shock protein within cellular crescents in human diseased kidneys. Yokoo T. Schober A. The response of heat shock proteins 25 and 72 to ischemia in different kidney zones. Pfluger Arch. Urinary heat shock protein-72 excretion in clinical and experimental renal ischemia. Pediatr Nephrol. Tsagalis G. The Expression of heat shock proteins 27 and 70 in lupus nephritis. Hospital Chronicles. Muller E. Pflugers Arch. Hernandez-Pando R. Histological and subcellular distribution of 65 and 70 kD heat shock proteins in experimental nephrotoxic injury. Lavoie J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. Preville X. Neuhofer W. Effect of ischemia on localization of heat shock proteins in kidney. Smoyer W. Hsp27 regulates podocyte cytoskeleton changes in an in vitro model of podocyte process retraction. Gupta W.
132. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока.
Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. Определение антител класса G к белку теплового шока Chlamydia trachomatis (cHSP60) позволяет диагностировать персистирующую форму хламидийной инфекции. Белки теплового шока утилизируют старые белки в составепротеасомыи помогат корректно свернуться заново синтезированным белкам. Hsp70 относится к классу белков теплового шока, которые есть в клетках всех живых организмов. Малые белки теплового шока – очень большая и гетерогенная группа, объединяющая в своем составе белки с молекулярными мас сами от 12 до 43 кДа. Белок теплового шока Hsp70 снижает чувствительность опухолевых клеток к терапии.
Антитела к белку теплового шока HSP60 Chlamydia trachomatis, IgG (Anti-cHSP60-IgG), кач. в Москве
Использование инфракрасной сауны и белков теплового шока | Белки теплового шока являются основными молекулярными маркерами как непосредственно теплового шока, так и практически любого экзогенного стресса. |
Как клетки выбирают путь спасения при стрессе | Малые белки теплового шока в поддержании большого протеома. Многие белки нуждаются в конформационной поддержке на протяжении всего срока их работы, ведь в клетке им приходится не сладко. |
Война и мир: как устроить белковую жизнь? | Инфекционно-аутоиммунно-воспалительная гипотеза патогенеза атеросклероза Белки теплового шока Белки теплового шока (или шапероны) являются олигомерными белками, которые помогают сворачиванию нативных или денатурированных. |
132. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока.
Представленные данные ориентируют на новую молекулярную стратегию превентивного лечения БП, направленную на усиление конформационного контроля нейрональных белков и клеточной защиты путем повышения экспрессии шаперонов семейства HSP70. К настоящему времени получено достаточно фактов, подтверждающих протективные эффекты повышенной экспрессии шаперонов HSP70 в различных животных моделях БП. Так, сверхэкспрессия генов индуцируемого белка hsp70 у Drosophila sp. Эксперименты с использованием теплового прекондиционирования для мобилизации стресс-индуцируемых форм HSPs показали сходный защитный эффект в моделях БП [ 102 , 103 ]. Фундаментальное значение для развития технологий лечения БП имеют данные, свидетельствующие, что проведение профилактической или превентивной терапии с помощью интраназальной доставки в мозг рекомбинантных белков Hsp70 или Grp78 человека препятствует развитию нейродегенерации в нигростриатной системе и проявлению моторных нарушений, а также улучшает функцию выживших ДА-ергических нейронов в лактацистиновой модели БП у крыс [ 105 — 107 ]. Немаловажный вклад в нейропротекцию Hsp70 и Grp78 вносит также их способность вовлекаться в механизмы деградации аномальных белков [ 21 , 110 ]. Эти киназы в конечном итоге гиперфосфорилируют тау-белок, что приводит к его агрегации и образованию нейрофибриллярных клубков НФК , дестабилизации микротрубочек, нарушениям синаптической активности и, как следствие, развитию когнитивного дефицита [ 34 ]. Образцы ткани головного мозга пациентов с БА показывают ослабление экспрессии некоторых шаперонов семейств sHSPs и HSP70 [ 115 ], а также их колокализацию с амилоидными бляшками и НФК, что может указывать на взаимодействие HSPs с патологическими белками, приводящими к развитию БА [ 116 ]. Действительно, функционируя в цитоплазме, Hsp70 ингибирует агрегацию амилоидного белка тау на ранних этапах и подавляет формирование тау-агрегатов. Hsp70 изолирует олигомеры и зрелые тау-фибриллы, нейтрализуя их способность повреждать мембраны и препятствуя дальнейшему распространению тау-патологии между клетками [ 117 ].
На моделях БА у мух Drosophila sp. Нейропротективные эффекты Hsp70 обусловлены активацией различных вне- и внутриклеточных сигнальных каскадов. После интраназального введения Hsp70 мышам в генетической модели БА отмечается усиление экспрессии генов, участвующих в процессинге и презентации антигена, особенно членов главного комплекса гистосовместимости. Авторы работы предполагают, что одной из нейропротекторных функций Hsp70 является активация адаптивного иммунитета [ 120 ]. Наряду с Hsp70 малые шапероны sHSPs также вовлечены в уменьшение токсичности амилоидных белков. Недавно выяснено, что Hsp22 и Hsp27 связываются со сформировавшимися амилоидными бляшками, ингибируют их фибриллизацию и останавливают интоксикацию [ 121 ]. Показано, что Hsp27 способен превращать маленькие токсичные олигомеры в большие нетоксичные белковые комплексы, которые затем могут удаляться из нейронов путем аутофагии. Скопления mHTT разрушают цитоскелет клеток и нарушают процесс транспорта синаптических везикул для дальнейшего экзоцитоза, что приводит к появлению у больных таких симптомов, как гипер- или гипокинезия, в зависимости от того, какой путь передачи нервного импульса прямой активирующий или непрямой тормозный затронут [ 123 ]. Частично этот процесс обусловлен включением шаперонов в состав агрегатов mHTT, а частично является следствием аномально быстрого разрушения фактора теплового шока HSF-1, индуцирующего процесс экспрессии HSPs [ 124 ].
Однако долгое время оставалось неизвестным, за счет каких механизмов Hsp70 и другие HSPs оказывают свои нейропротективные эффекты. В 2011 г. Hsp70 АТФ-зависимо связывается с белковыми фрагментами, богатыми полиQ-повторами, что предполагает участие его шаперонной активности в разрушении белковых агрегатов. В 2015 году в модели in vitro было установлено, что именно взаимодействие Hsp70 и Hsp40 с аминокислотами в N-терминальном участке гентингтина препятствует формированию его патологических агрегатов [ 127 ]. Активация ответа теплового шока и увеличение содержания в клетках HSPs приводит к ускорению процесса агрегации мутантных белков, а также способствует протеасомной деградации растворимого mHTT и аутофагии нерастворимых агрегатов [ 128 ]. Недавно продемонстрировано, что критическим участником образования токсичных белковых агрегатов в моделях БГ является глицеральдегид-З-фосфатдегидрогеназа ГАФД , которая может выступать как субстрат для процессов белковой агрегации. Одной из функций конститутивной формы шаперона Hsc70 является регуляция клатрин-опосредованного эндоцитоза, процесса, необходимого для интернализации некоторых мембранных рецепторов. Однако в патологических состояниях Hsc70 вовлекается в процесс агрегации гентингтина и других белков с полиQ-хвостами, содержание его в цитоплазме клетки в свободной форме снижается и процесс эндоцитоза нарушается, что может частично объяснить возникновение когнитивного дефицита, наблюдаемого при БГ [ 130 ]. При этом увеличение содержания Hsc70 останавливает развитие этих нарушений.
Практически у всех пациентов с АЛС postmortem в цитоплазме нейронов головного мозга обнаруживаются белковые агрегаты, включающие убиквитин и ДНК-связывающий белок TDP-43, который в норме присутствует только в ядрах нервных клеток [ 133 ]. Неправильная конформация и цитозольная локализация TDP-43 приводят к потере его функциональной активности, нарушая нормальное течение процессов транскрипции и трансляции в клетке. Более того, агрегаты TDP-43 являются токсичными для клеток и приводят к гиперактивации систем деградации белков, развитию нейровоспаления и гибели нейронов [ 134 ]. Исследование образцов головного мозга пациентов с АЛС показало колокализацию некоторых HSPs, в частности Hsp27, с агрегатами TDP-43, что свидетельствует о том, что в патологических условиях доступность этих шаперонов для выполнения их функций резко снижается, что ухудшает эффективность реакции нейронов на клеточный стресс и повышает их уязвимость [ 135 ]. Об участии HSPs в развитии патологического процесса при АЛС свидетельствует также тот факт, что уровни некоторых HSPs, в частности, Hsp70 и Hsp90, повышены в сыворотке крови больных людей, начиная с ранних стадий развития заболевания [ 136 ]. На модели АЛС на первичной культуре нейронов мыши и у дрожжей показано, что увеличение содержания в клетках шаперона Hsp40 снижает токсичность и агрегацию TDP43-белков, при этом общее содержание TDP43 в клетках не меняется [ 137 , 138 ]. Hsp40 способен поддерживать TDP-43 в растворимом конформационном состоянии, при этом не изменяя общее содержание TDP-43 в клетке. Таким образом, терапия с помощью активации ответа теплового шока или прямой индукции синтеза Hsp40 способна замедлить процесс патологического агрегирования TDP-43, интоксикации клеток и нейродегенерации [ 139 ]. В совокупности представленные результаты являются фундаментальным обоснованием для поиска нейропротективных препаратов, способных мобилизовать шаперонный механизм HSPs в нейронах головного мозга, с целью проведения превентивной или профилактической терапии конформационных заболеваний.
Основным активатором транскрипции генов HSPs при развитии стресса является транскрипционный фактор теплового шока HSF1 [ 140 ]. У всех эукариотических организмов в состоянии покоя HSF1 находится в мономерном, связанном с Hsp90 состоянии. В ответ на стресс HSF1 освобождается от Hsp90, тримеризуется, фосфорилируется, транслоцируется в ядро и запускает транскрипцию стресс-индуцируемых генов hsp [ 141 ]. Старение организма и развитие конформационных заболеваний сопровождаются пониженным уровнем экспрессии и активности HSF1, а значит и сниженной способностью нейронов противостоять токсическим повреждениям и нейродегенерации [ 8 ]. Следовательно, для мобилизации защитных механизмов требуется активация HSF1.
Посещение бани может продлить жизнь и помогает омолодить организм. Влияние бани на продолжительность жизни усиливается применением бани в дни голода, так как аутофагия переваривание организмом внутриклеточного мусора это тоже сильнейший инструмент, для востановления, оздоровления и омоложения организма.
Согласие Пользователя на подобную передачу предусмотрено правилами политики Сайта. Также обработанные Администрацией сайта персональные данные могут передаваться уполномоченным органов государственной власти Российской Федерации, если это осуществляется на законных основаниях и в предусмотренном российским законодательством порядке. Если персональные данные будут утрачены или разглашены, Пользователь уведомляется об этом Администрацией сайта. Все действия Администрации сайта направлены на то, чтобы не допустить к персональным данным Пользователя третьих лиц за исключением п. Последним эта информация не должна быть доступна даже случайно, дабы те не уничтожили её, не изменили и не блокировали, не копировали и не распространяли, а также не совершали прочие противозаконные действия. Для защиты пользовательских данных Администрация располагает комплексом организационных и технических мер. Если персональные данные будут утрачены либо разглашены, Администрация сайта совместно с Пользователем готова принять все возможные меры, дабы предотвратить убытки и прочие негативные последствия, вызванные данной ситуацией. Обновление и дополнение предоставляемых им сведений в случае изменения таковых. В обязанности Администрации сайта входит: Применение полученных сведений исключительно в целях, обозначенных в п. Обеспечение конфиденциальности поступивших от Пользователя сведений. Они не должны разглашаться, если Пользователь не даст на то письменное разрешение. Также Администрация не имеет права продавать, обменивать, публиковать либо разглашать прочими способами переданные Пользователем персональные данные, исключая п. Принятие мер предосторожности, дабы персональные данные Пользователя оставались строго конфиденциальными, точно также, как остаются конфиденциальными такого рода сведения в современном деловом обороте. Блокировка персональных пользовательских данных с того момента, с которого Пользователь либо его законный представитель сделает соответствующий запрос. Право сделать запрос на блокировку также предоставляется органу, уполномоченному защищать права Пользователя, предоставившего Администрации сайта свои данные, на период проверки, в случае обнаружения недостоверности сообщённых персональных данных либо неправомерности действий.
К счастью, сегодня лучшее время в истории, чтобы сделать выбор в пользу образа жизни, который поддерживает выработку HSP в организме: среди наиболее эффективных инструментов, доступных сегодня, — инфракрасная сауна широкого спектра действия. Инструменты для увеличения количества белков теплового шока в организме: древняя традиция термальной терапии Наши предки создавали и использовали различные формы термальной терапии на протяжении веков. В то время как конструкции и тип тепла, используемого для целей термотерапевтических установок, менялись на протяжении всей истории, их основная врожденная цель оставалась неизменной. Название От парилок коренных американцев, турецких хаммамов, традиционных финских саун , японских ванн с горячими источниками и до новейшей разработки в области теплотерапии, инфракрасной сауны , все они дают возможность подвергать тело усиленному внешнему теплу в течение определенных периодов времени. Регулярное использование любой из упомянутых выше моделей термотерапии усилит выработку БТШ. Сауны с инфракрасным излучением широкого спектра обеспечивают те же преимущества, что и большинство традиционных моделей теплотерапии, но, поскольку источником тепла является излучение, каскад преимуществ для здоровья, получаемых от клеточного ответа на световые волны, является экспоненциальным. Почему инфракрасная сауна является выбором номер один для повышения выработки белков теплового шока? Весьма специфическое воздействие спектра инфракрасного света на биологию человека усугубляет положительный эффект увеличения количества HSP. А именно, уникальный клеточный ответ на инфракрасные волны усиливает оксигенацию кровотока, и когда это сочетается с увеличением HSP, возникает биологическая магия 5. В то время как есть много инструментов, которые можно использовать для создания тела, созревшего с СЧЛ, включая погружение в холодные внешние температуры, что такого особенного в инфракрасной сауне широкого спектра действия? Да, HSP будут увеличиваться во время любого сеанса термальной терапии, но что делает воздействие инфракрасного света уникальным по своему назначению, так это взаимосвязь между длинами волн этого света, клеточным составом и механизмом человеческого тела.
Российский физиологический журнал им. И.М. Сеченова, 2019, T. 105, № 12, стр. 1465-1485
EMFace: влияние белков теплового шока на ремоделирование миофасциального каркаса | Белки теплового шока в этой ситуации выступают не только как шапероны, но и как потенциальные антиоксиданты. |
Как российские ученые работали над новым методом лечения болезни Альцгеймера? | Открытие белков теплового шока в начале 1960-х годов объясняет на молекулярно-биологическом уровне, почему люди обратились к термальной терапии, чтобы очистить тело, очистить разум и найти связь с более высокой силой во времени и странах (1). |
«Космическое» российское лекарство от всех видов рака будет доступным
Белки теплового шока (англ. HSP, Heat shock proteins) — это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях.[1] Повышение экспрессии генов. Препарат «Белок теплового шока» был разработан на основе уникальной молекулы, которую «вырастили» в космосе. Затем белки теплового шока начинают воздействовать на белки с другими функциями с целью нормализовать их работу или утилизировать те белки, которые перестали корректно работать в результате стресса. Патогенетические механизмы формирования хгрс, реализуемые белком теплового шока HSP-70 и аутоантителами к нему. Вероятно, именно поэтому белки теплового шока обнаружены во всех организмах от бактерий до человека и относятся к группе наиболее консервативных белков.
Белки теплового шока (стресс-белки)
ность и сложность состава низкомолекулярных (15—30 кДа) полипептидов, негомологичных соответствующим БТШ других организмов. Исследователи использовали для борьбы с болезнью века так называемые белки теплового шока — они образуются в организме в ответ на воздействие стресса и помогают «чинить» различные поломки в клетках. В результате была подтверждена эффективность уже известных геропротекторов, включая иммунодепрессант рапамицин, а также двух новых, монордена и танеспимицина, принадлежащих к группе ингибиторов белка теплового шока 90 (Hsp90).
В Петербурге испытали на мышах вещество от болезни Альцгеймера
В образцах культуральных сред не было обнаружено лизосом анализ маркерного лизосомального белка катепсин Д. Далее мы исследовали участие липидных рафтов, являющихся важными субдоменами плазматической мембраны, в секреции hsp72, hsc73 и hsp96 клетками А172 и НТ1080. Был проведен ингибиторный анализ с использованием холестерин-истощающего препарата метилбетациклодекстрин МВС. В то же время, в исследуемой фракции мы не обнаруживали hsp96. Роль липидных рафтов в секреции БТШ. А Иммуноблоттинг фракций после разделения клеточного лизата в градиенте плотности OptiPrep. Б Активность щелочной фосфотазы во фракциях градиенты. Таким образом, можно заключить, что опухолевые клетки глиобластомы человека А172 и фибросаркомы человека НT1080 имеют сходные механизмы секреции hsp72, hsc73 и hsp96. В секреции hsp72 и hsc73 важную роль играют липидные рафты, с которыми ассоциированы эти БТШ.
Везикулярные секреторные структуры экзосомы и лизосомы клетки, вероятно, не участвуют в секреции hsp72, hsc73 и hsp96. Список литературы Guzhova I. Mambula, S. Srivastava P. Pittet J. Dybdahl B. Cell Dev.
Это заболевание проявляется в поражении половых органов, глаз, органов дыхания и суставов. Передача инфекции происходит в основном через половой и контактно-бытовой пути, исключительно маленький размер элементарных телец С. Chlamydia trachomatis существует в двух формах: инфекционная элементарное тельце , которая слабо активна метаболически и может существовать вне клеток организма, вегетативная ретикулярное тельце , которая метаболически активна внутри клеток и образуется в процессе размножения хламидий. В процессе разделения ретикулярных телец внутри клеток их превращение в элементарные тельца создает до 1000 новых элементарных телец. Цикл развития обычно завершается гибелью эпителиальных клеток и освобождением новых элементарных телец. При определенных условиях например, изменения в иммунитете, неэффективное лечение антибиотиками развитие ретикулярных телец и их превращение в элементарные телецы замедляется, что приводит к снижению выраженности основных антигенов Chlamydia trachomatis, ослабляет иммунный ответ и изменяет чувствительность к антибиотикам.
Ученые предположили и смогли доказать, что белок теплового шока — лекарство, а точнее, может стать основой для эффективного препарата, во многом именно благодаря тому, что эти молекулы формируются в стрессовых ситуациях. Так как они изначально организмом продуцируются, чтобы обеспечить выживание клеток, было сделано предположение, что при должной комбинации с другими средствами можно бороться даже с опухолью. БТШ помогает препарату обнаруживать в больном организме пораженные клетки и справляться с некорректностью ДНК в них. Предполагают, что новый препарат станет в равной степени результативным для любого подтипа злокачественных заболеваний. Звучит похоже на сказку, но врачи идут еще дальше — они предполагают, что излечение будет доступным на совершенно любой стадии. Согласитесь, такой белок теплового шока от рака, когда пройдет все испытания и подтвердит свою надежность, станет бесценным приобретением для человеческой цивилизации. Диагностировать и лечить Наиболее подробную информацию о надежде современной медицины рассказал доктор Симбирцев, один из тех, кто работал над созданием медикамента. Из его интервью можно понять, по какой логике ученые построили препарат и каким образом он должен принести эффективность. Кроме того, можно сделать выводы, прошел ли уже белок теплового шока клинические испытания или это еще впереди. Как уже было указано ранее, если организм не переживает стрессовых условий, тогда продуцирование БШ имеет место в исключительно малом объеме, но он существенно возрастает с изменением внешнего влияния. В то же время нормальный организм человека не в состоянии продуцировать такое количество БТШ, которое помогло бы победить появившееся злокачественное новообразование. Как это должно сработать? Чтобы создать новое лекарство, ученые в лабораторных условиях воссоздали все необходимое, чтобы живые клетки начали продуцировать БТШ. Для этого был получен человеческий ген, претерпевший клонирование при применении новейшей аппаратуры. Бактерии, исследованные в лабораториях, видоизменялись до тех пор, пока не начали самостоятельно продуцировать столь желанный для ученых белок. Научные работники на основе полученной при исследованиях информации сделали выводы о влиянии БТШ на человеческий организм. Для этого пришлось организовать рентгеноструктурный анализ белка. Сделать это совсем непросто: пришлось направить пробы на орбиту нашей планеты. Это обусловлено тем, что земные условия не подходят для правильного, равномерного развития кристаллов. А вот космические условия допускают получение именно тех кристаллов, которые были нужны ученым. По возвращении на родную планету подопытные образцы были разделены между японскими и русскими учеными, которые взялись за их анализ, что называется, не теряя ни секунды. И что нашли? Пока работы в этом направлении все еще ведутся. Представитель группы ученых сказал, что удалось точно установить: нет точной связи между молекулой БТШ и органом или тканью живого существа. А это говорит об универсальности. Значит, если белок теплового шока и найдет применение в медицине, он станет панацей сразу от огромного количества заболеваний — какой бы орган ни оказался поражен злокачественным новообразованием, его удастся вылечить. Первоначально ученые изготовили препарат в жидкой форме — подопытным его вводят инъективно. В качестве первых экземпляров для проверки средства были взяты крысы, мыши. Удалось выявить случаи излечения как на начальных, так и на поздних стадиях развития болезни.
Экспериментально доказано, что снижение экспрессии Hsp70 в ДА-ергических нейронах кчЧС с помощью технологиии микроРНК или при физиологическом старении в модели БП у крыс приводит к более быстрому прогрессированию нейродегенеративной патологии в нигростриатной системе [ 35 , 36 ]. Таким образом, неспособность нейронов регулировать собственную систему протеома вследствие ослабления молекулярных механизмов конформационного контроля белков и дисфункции системы утилизации белков, лежит в основе патогенеза конформационных заболеваний. Это открывает перспективу выяснения нейропротективных свойств шаперонов при протеасомной дисфункции, типичной для патогенеза конформационных заболеваний. К настоящему моменту накопилось достаточно фактов, что члены семейств HSP70 и sHSPs способны проявлять защитные эффекты в моделях нейродегенеративных патологий [ 38 , 39 ]. Рассмотрим основных представителей этих семейств. Данное семейство включает в себя несколько членов, различных по функциям и локализации в клетке: конститутивно экспрессируемый Hsс70, индуцируемый Hsp70, митохондриальный mtHsp70, глюкозо-регулируемый белок ЭПР Grp78. Основной функцией HSP70 в клетке является осуществление конформационного контроля на всех этапах жизни белка-клиента. HSP70 участвуют в фолдинге новосинтезированных полипептидов, рефолдинге белков с неверной структурой, разрушении старых или мутантных белков в УПС и лизосомах, растворении белковых олигомеров и агрегатов [ 40 ]. Все эти функции связаны со способностью HSP70 узнавать гидрофобные участки, экспонированные на поверхности поврежденных белков, и подвергать белки-клиенты АТФ-зависимому циклу связывания и высвобождения. Такие циклы позволяют коротким молекулам с высокой скоростью фолдинга принять правильную конформацию. Более длинные молекулы могут повторно связываться с HSP70, что предотвращает их агрегацию [ 9 ]. Кошапероны модулируют активность шаперонов, регулируя их АТФазную активность и влияя на взаимодействие с белками-мишенями. Так, кошаперон с J-доменом Hsp40 первым узнает неправильно сложенные полипептиды, передает их Hsp70 и запускает гидролиз АТФ [ 42 ]. TRP-содержащий кошаперон CHIP является убиквитин-лигазой и метит для протеолиза в протеасоме субстраты, эффективный фолдинг которых невозможен [ 44 ]. Индуцируемый белок теплового шока Hsp70, находящийся в цитоплазме, является одним из наиболее распространенных белков в клетке. О его важной роли в поддержании нормальной жизнедеятельности клеток и целого организма говорит эволюционная консервативность его аминокислотной последовательности и обнаружение практически во всех живых организмах на Земле [ 45 ]. Hsp70 является классическим шапероном, способным связывать неправильно свернутые белковые молекулы и придавать им правильную конформацию с использованием энергии АТФ. Многочисленные исследования показывают, что Hsp70 способен связывать разнообразные патологические белки с нарушенной конформацией, возникающие при развитии нейродегенеративных заболеваний, и облегчать их рефолдинг. Кроме этого, Hsp70 вступает в белок-белковое взаимодействие с некоторыми везикулярными белками и ферментами, а также способен модулировать ГАМК- и аденозин-связанные процессы в головном мозге [ 49 — 51 ]. Являясь полифункциональным белком, Hsp70 вовлекается в молекулярные механизмы регуляции сна и температурного гомеостазиса, судорожной активности, воспалительных и иммунных реакций, эмоционального поведения [ 49 , 52 — 56 ]. Конститутивный цитоплазматический член семейства HSP70 — белок Hsc70 — выполняет множество функций, связанных с поддержанием нормальной жизни клетки. Hsc70 осуществляет фолдинг новосинтезированных полипептидов в цитоплазме, помогая принять функционально-активную структуру огромному разнообразию белков [ 57 ]. Hsc70 способен выступать челноком между цитоплазмой и ядром и с помощью АТФ транспортировать белки между этими компартментами [ 58 ]. Недостаточное содержание Hsc70 в цитоплазме останавливает процесс убиквитинирования белков с нарушенной структурой и затрудняет их последующую протеасомную деградацию [ 59 ]. Немаловажную роль Hsc70 играет в процессах шаперон-опосредованной аутофагии, ведь именно он направляет неправильно свернутые белки в лизосомы для деградации. В случае если в клетке присутствуют белковые агрегаты или поврежденные органеллы, Hsc70 запускает процесс их селективной макроаутофагии в фагосомах [ 60 ]. Помимо участия в процессах фолдинга и деградации белков, Hsc70 играет роль в процессах клатрин-опосредованного эндоцитоза, презентации антигена, регуляции гематопоэза и других физиологических функций клетки и целого организма [ 45 ]. Grp78 отвечает за фолдинг и рефолдинг белков, поступающих в ЭПР, контролирует кальциевый баланс клетки. Важной функцией Grp78 является его участие в запуске реакции, известной как стресс ЭПР unfolded protein response , вызываемой накоплением в клетке поврежденных белков с открытыми гидрофобными сайтами в результате действия различных стрессорных факторов [ 61 ]. Развитие стресса ЭПР характеризуется увеличением экспрессии Grp78 и Grp94 член семейства HSP90 , участвующих в ремонте поврежденных белков, подавлении процесса трансляции и запуске деградации поврежденных белков при участии УПС [ 62 ]. Таким образом, стресс ЭПР может рассматриваться как защитная реакция, направленная на восстановление нормальных функций белков, работающих в ЭПР. Сигналами для активации шаперона-резидента митохондрий mtHsp70 или морталина являются недостаток глюкозы, нарушение баланса кальция и тиреоидных гормонов. Функции морталина не ограничиваются его вовлечением в разнообразные базовые процессы, происходящие в митохондриях, в частности, фолдингом новосинтезированных митохондриальных пре-протеинов, а включают также импорт и экспорт белковых молекул в различных клеточных компартментах, процессинг антигенов, интернализацию рецепторов, ингибирование процесса апоптоза. В условиях клеточного стресса морталин способен взаимодействовать с белком-активатором апоптоза p53 и инактивировать его [ 63 ]. Функционально активная форма mtHsp70 должна быть фосфорилирована по определенным сайтам, и нарушения процесса правильного фосфорилирования этого шаперона связывают с развитием БА и других конформационных заболеваний [ 64 ]. В человеческом геноме идентифицировано 10 членов этого семейства, которые разделены на два класса в соответствии с их свойствами и функциями. Эти белки являются стресс-индуцируемыми и играют большую роль в выживании клеток при действии стрессорных стимулов [ 65 ]. Так, Hsp27 образует стабильные димеры, которые, в свою очередь, могут агрегировать и формировать нестабильные олигомеры с большой молекулярной массой [ 67 ]. Эффективность олигомеризации зависит от физиологических условий, в которых находится клетка: стресс например, тепловой шок приводит к увеличению степени фосфорилирования Hsp27, что активирует процесс его олигомеризации. Вероятно, степень олигомеризации определяет шаперонную активность: крупные олигомеры обладают высокой шаперонной активностью, в то время как димеры совсем ее не имеют [ 68 ]. Шаперонная активность малых белков теплового шока увеличивается при возрастании температуры окружающей среды [ 69 ]. Существует два типа взаимодействия этих шаперонов с неправильно свернутыми белками — обратимая относительно слабая связь, помогающая субстрату принять нативную конформацию, и необратимое взаимодействие, позволяющее сохранить предшественники белковых агрегатов в растворимом состоянии [ 70 ].
Использование инфракрасной сауны и белков теплового шока
БЕЛКИ ТЕПЛОВОГО ШОКА: БИОЛОГИЧЕСКИЕ ФУНКЦИИ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ | Стимулируя выработку белков теплового шока, этот метод формирует устойчивость нейронов к стрессу и в свою очередь стимулирует клетки-предшественники, которые восполняют и замещают погибшие нервные клетки. |
Белки теплового шока (стресс-белки) | Препарат «Белок теплового шока» был разработан на основе уникальной молекулы, которую «вырастили» в космосе. |
Белок теплового шока | Малые белки теплового шока – очень большая и гетерогенная группа, объединяющая в своем составе белки с молекулярными мас сами от 12 до 43 кДа. |
Как «работает» лекарство, и какие виды рака можно будет лечить с его помощью
- Как лечить белок теплового шока к хламидиям - Вопрос гинекологу - 03 Онлайн
- 132. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока.
- Антитела к белку теплового шока Chlamydia trachomatis (Anti-cHSP60), IgG
- СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
- Белки теплового шока | Virtual Laboratory Wiki | Fandom
- Москва. Другие новости 02.03.17
Первых кроликов-продуцентов человеческого белка теплового шока планируют получить в 2022 году
И снова, если в голодающих клетках увеличена экспрессия белка HSP70, аутофагия в них развивается медленнее. Таким образом, белок HSP70 ингибирует аутофагию в культуре клеток. Аутофагия может быть вызвана не только голоданием, но и ингибированием белка mTOR. В зависимости от условий он запускает процессы запасания или расходования энергии. Если mTOR активен, то аутофагия не запускается. HSP70 является только одним звеном в развитии ответа на тепловой шок.
Точнее, он — непосредственный исполнитель, который участвует в стабилизации структуры других белков и ее исправлении. Чтобы проверить, участвует ли он в развитии аутофагии в условиях стресса, исследователи подавили экспрессию HSF-1 при помощи миРНК короткой молекулы РНК — около 20 нуклеотидов, комплементарной участку мРНК определенного гена в данном случае, HSF-1 , и способной вызывать «выключение» конкретного гена рис. Это само по себе вызвало развитие аутофагии, что было показано по увеличившемуся количеству модифицированного белка LC3. Повышение экспрессии HSP70 в таких условиях предотвращало развитие аутофагии. Следовательно, можно сделать вывод, что именно HSP70 является промежуточным звеном между HSF-1 и предотвращением развития аутофагии.
При этом важна именно каталитическая активность HSP70 — мутация в той его части, которая ответственна за проявление активности, приводит к развитию аутофагии в стрессовых условиях. Клетки помещали в нормальные условия белые столбики или в среду с недостатком питательных веществ EBSS, черные столбики. Рисунок из обсуждаемой статьи в Journal of Biological Chemistry Все описанные эксперименты были проведены на культуре клеток. Это хорошая модель, однако организм — более сложная система. И проверка полученных результатов на уровне организма необходима.
Авторы исследования не остановились на модельных экспериментах и изучили аутофагию у людей рис. Простейшим способом вызвать стресс является выполнение упражнений. Было показано, что у людей после физической нагрузки интенсивность аутофагии в мононуклеарных клетках крови лимфоциты , моноциты , макрофаги увеличивается рис. Но как доказать, что в этом процессе участвует HSP70? В культуре клеток всё просто — надо выключить его и посмотреть, как изменится ответ.
Если вы работаете с мышами, то можно вывести животных с дефицитом интересующего белка — такназываемых нокаутных животных подробнее про нокаутных животных см. Но если в эксперименте принимают участие люди, то остается надеяться только на физиологические способы изменения активности белков. В случае HSP70 известно, что его активность увеличивается при добавлении глутамина в пищу. Исследователи использовали такой подход: одна группа добровольцев в течение недели три раза в день выпивала раствор глутамина, а вторая группа — раствор, не содержащий глутамина плацебо. На восьмой день проводили тест с физической нагрузкой.
После него у добровольцев брали кровь, выделяли из нее мононуклеарные клетки и уже в них анализировали интенсивность протекания аутофагии и количество HSP70. Оказалось, что прием глутамина значительно снижает проявление аутофагии, что согласовывалось с повышением количества HSP70. Сам по себе этот факт — только интересная корреляция. Однако вместе с экспериментами на культуре клеток он говорит о том, что аутофагия непосредственно связана с белками теплового шока. Показатели для добровольцев, принимавших глутамин, показаны черными столбиками, для принимавших плацебо — белыми.
По оси абсцисс показано время после физической нагрузки. Видно, что у добровольцев, принимавших плацебо, с течением времени развивается аутофагия, а у принимавших глутамин — остается на низком уровне. Напротив, количество HSP70 у принимавших глутамин больше, чем у принимавших плацебо.
Состоялся научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении» Состоялся научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении» 25 апреля 2024 Новости Центра 25 апреля 2024 года в ФГБУ «НМИЦ ТПМ» Минздрава России прошел научный семинар «Диагностический и прогностический потенциал белков теплового шока при ожирении», на котором обсуждалась возможность проведения НИР, посвященных исследованию доступных иммуноферментных биомаркеров из группы белков теплового шока БТШ, HSP у больных с ожирением, в том числе на фоне диетотерапии. В ходе семинара с докладом «Биохимия клеточного стресса» выступил руководитель лаборатории изучения биохимических маркеров риска ХНИЗ имени Н. Перовой отдела фундаментальных и прикладных аспектов ожирения к.
Специалисты МГМУ впервые в России предложили использовать белки теплового шока для борьбы с нейродегенерацией, что может привести к остановке развития таких заболеваний, как болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз Эти белки, образующиеся в организме под воздействием повышенной температуры, играют ключевую роль в защите клеток от стресса.
Недавние исследования показали, что увеличение производства таких белков способно оказать защитное воздействие на нервные клетки и замедлить процессы нейродегенерации. Источник фото: Фото редакции Ученые провели эксперименты на трансгенных мышах, специально спроектированных для изучения влияния белков теплового шока на развитие нейродегенеративных заболеваний.
Согласно существующей классификации, все клеточные организмы делятся на два надцарства, или домена: прокариоты археи и бактерии, в число которых входит ахолеплазма и эукариоты растения, грибы, насекомые, водоросли и животные, включая человека. Разница между доменами в строении клетки в том, что у эукариотов есть оформленное клеточное ядро, в котором расположен развитый аппарат для деления клеток, у прокариотов же он менее развит, а клеточное ядро отсутствует. Ранее взаимодействие между белками теплового шока и белками, отвечающими за клеточное деление у прокариот, в научной литературе не встречалась.
Для проверки гипотезы о том, что в ахолеплазме белок теплового шока IbpA оказывает влияние на белок, отвечающий за клеточное деление FtsZ, ученые ИНЦ РАН использовали несколько молекулярно-генетических методов. Клетки ахолеплазмы изучались с помощью просвечивающей электронной микроскопии, кроме того, применялся так называемый плазмонный поверхностный резонанс. Этот метод позволяет точно фиксировать взаимодействие различных биомолекул в клетке в режиме реального времени. FtsZ — белок, который обнаружен почти у всех известных бактерий. Он запускает или активирует клеточное деление у бактерий, в том числе и у ахолеплазмы.