Новости лазеры и аппаратура

Компания "Лазеры и аппаратура" по итогам 2022 года произвела и поставила заказчикам 24 лазерные установки, что почти втрое превышает показатели 2021-го.

Китайские ученые разрабатывают лазерный двигатель для сверхзвуковых подводных лодок

С каждым годом штат наших сотрудников стремительно растет. Мы приглашаем специалистов с разным опытом работы и всегда рады видеть новые таланты. Видео о нашем производственном процессе ЛАССАРД — компания полного цикла Обнинск На производственной площадке в Обнинске мы разрабатываем и изготовляем все компоненты для лазеров: от выращивания кристаллов и протягивания оптоволокна до сборки квантронов и оптомеханики. Красноказарменная На Красноказарменной площадке создаются передовые волоконные лазеры, а также оптические механизмы.

Аттосекундный лазер показал, что промежуточных состояний нет — это всё миражи или помехи. Кратковременное воздействие фемтосекундным лазером на теллуритовое стекло превращало его в полупроводник, чувствительный к свету.

Тем самым можно производить фоточувствительные стёкла без каких-либо дополнительных материалов и усилий, что учёные в шутку сравнили с алхимией. Источник изображения: EPFL «Это фантастика, мы на месте превращаем стекло в полупроводник с помощью света, — сказал один из авторов исследования Ив Беллуар Yves Bellouard. Учёных заинтересовало поведение атомов в теллуритовом стекле TeO2 при воздействии на него сверхбыстрых импульсов высокоэнергетического лазерного излучения. Они обнаружили, что лазер в месте падения луча создаёт в толще стекла крошечные кристаллы полупроводниковых материалов теллура и оксида теллура. Это означает, что обработанные таким образом участки могут вырабатывать электричество под воздействием дневного света.

Всё, что вам нужно — это теллуритовое стекло и фемтосекундный лазер для создания активного фотопроводящего материала», — добавил учёный. В ходе эксперимента на полученный из Японии 1-см диск теллуритового стекла лазером был нанесён штриховой рисунок. Под воздействием света от ультрафиолетового и до видимого диапазона обработанный участок вырабатывал электрический ток, оставаясь месяцами стабильно работающим. Точно также на стекле можно создавать светочувствительные датчики и другие полупроводниковые схемы, используя для этого только источник лазерного света. Рисунок можно наносить на месте на уже установленное стекло, превращая его в умное с необходимой функциональностью.

Правда, обычные оконные стёкла для этого не подходят. Но если технологию подхватят производители, то это может привести к революции в архитектуре. Его энергии хватит, чтобы зарядить аккумуляторы небольших спутников, рои которых обещают появиться на орбите. Солнечные батареи нецелесообразно использовать для их питания, а направленный энергетический луч — вполне. Источник изображения: WiPTherm Четыре года назад в Европейском союзе создали консорциум по разработке системы беспроводного питания наноспутников.

Основной целью проекта WiPTherm было создание инновационной системы беспроводной передачи энергии, которая могла бы заряжать компоненты накопителей энергии на спутниках микро- и наноразмеров. Интересно отметить, что выбор был сделан в пользу термоэлектрических, а не фотоэлектрических приёмных систем. Группа разработала приёмник и оптическую систему с использованием массива линз и 27 термоэлектрическими датчиками. В качестве передатчика энергии был взят за основу 1550-нм лазер, обычно использующийся для оптоволокна. Согласно целям проекта, группа должна была создать 40-Вт источник энергии с далёкой перспективой добиться передачи по лучу 1 кВт энергии.

Недавняя демонстрация технологии на авиабазе Сан-Хасинту в Авейру Португалия подтвердила жизнеспособность разработки, хотя мощность луча на выходе достигла всего 20 Вт. Попав на датчики, лазер создал перепад температуры, и это привело к протеканию электрического тока в системе приёмника. С учётом перспектив обуздания излучения мощностью до 1 кВт крепнет ощущение, что это технология двойного назначения. Для наземных и даже воздушных целей она не будет представлять опасности, но для объектов на орбите может создавать угрозу. С точки зрения питания микроспутников по лазерному лучу идея достаточно здравая.

Один большой корабль на высокой орбите, где Земля никогда не заслоняет Солнце, способен будет питать десятки, сотни и, скорее всего, тысячи мелких аппаратов, поддерживая работу их систем и даже питая электрорактные ионные двигатели. Предполагается, что проведённые стрельбы откроют путь к созданию недорогой альтернативы ракетам ПВО для уничтожения таких целей, как военные беспилотники. Источник изображений: министерство обороны Великобритании Во время испытаний на Гебридских островах лазерная установка DragonFire уничтожила приближающиеся беспилотники с расстояния в несколько миль, что, по мнению экспертов, стало важной вехой для британских военных, сообщает The Times. Испытания прошли на полигоне в Шотландии, и британское министерство обороны «важным шагом» на пути к принятию технологии на вооружение. Министр обороны Грант Шаппс Grant Shapps заявил, что технология может снизить «зависимость от дорогостоящих боеприпасов, а также уменьшить риск сопутствующего ущерба».

По словам представителей министерства обороны Великобритании, лазерное оружие DragonFire достаточно точно, чтобы поразить монету в 1 британский фунт с расстояния в километр. Диаметр данной монеты составляет всего 23 мм. Также было отмечено, что как британская армия, так и флот рассматривают возможность использования лазерного оружия в своих перспективных системах противовоздушной обороны ПВО. Заметим, что главным средством ПВО сейчас являются ракеты. Причём применяемые в таких системах боеприпасы могут быть гораздо дороже уничтожаемых ими беспилотников: некоторые из таких ракет стоят миллионы долларов, тогда как беспилотник может стоить лишь несколько тысяч.

По данным минобороны Великобритании, 10-секундная стрельба из системы DragonFire по стоимости эквивалентна использованию обычного бытового обогревателя в течение часа. Лазерное оружие, которое официально называется «энергетическое оружие с лазерным наведением» LDEW использует мощный световой луч для поражения цели и может наносить удары в буквальном смысле со скоростью света. Дальность действия системы DragonFire засекречена, но это оружие прямой видимости, то есть оно может атаковать любую видимую цель в пределах досягаемости. Руководитель DSTL доктор Пол Холлинсхед Paul Hollinshead сказал: «Благодаря этим испытаниям мы сделали огромный шаг вперед в реализации потенциальных возможностей и понимании угроз, которые несет в себе оружие направленной энергии». Также было отмечено, что оружейная система DragonFire — результат совместных инвестиций минобороны и промышленности Великобритании в размере 100 миллионов фунтов стерлингов.

Спонсируемая структурами Европейского союза разработка обещает приблизить появление нового типа полупроводниковых лазеров на PeLED, что подтолкнёт развитие проекционных и зондирующих систем в жизни, медицине и промышленности. Прототип сверхъяркого светодиода из перовскита на сапфировой подложке. Источник изображения: Imec Перовскиты — особые соединения полупроводниковых материалов — уже зарекомендовали себя в сфере фотовольтаики. Они позволяют создавать элементы на гибкой подложке, поддерживают высокую мобильность электронов и обещают быть недорогими при производстве. Также они рассматриваются как кандидаты в светодиоды.

Главная задача, которая стояла перед учёными, заключалась в обеспечении подвода тока беспрецедентной плотности на малом участке подложки. Исследователи смогли найти решение в виде чередования прозрачных и непрозрачных слоёв металлизации на сапфировой подложке. Целью исследователей не является разработка сверхъярких экранов для смартфонов или другой электроники. Они ищут путь к созданию полупроводниковых лазеров на основе перовскита, и проделанная работа подводит их к этому. Это уже шаг в область создания тонкоплёночных инжекционных полупроводниковых лазеров из перовскита, что становится ключевой вехой на пути к созданию лазера для покорения новых высот в проецировании изображений, зондировании окружающей среды, медицинской диагностике и за её пределами.

В текущем году эта операция была повторена трижды и каждый раз с превышением энергии выхода над затраченной. Повторяемость стала лучшим доказательством того, что учёные находятся на правильном пути и добьются ещё большего успеха в будущем. Источник изображения: LLNL Сегодня наиболее перспективными термоядерными реакторами считаются токамаки — реакторы с камерой в виде пончиков. Это предопределило выбор проекта для строительства первого масштабного экспериментального термоядерного реактора ИТЭР во Франции. Но есть и другие способы запустить термоядерную реакцию.

Например, с помощью лазеров, если их энергию в достаточной мере сконцентрировать на топливе. В конечном итоге нам надо заставить атомы водорода преодолеть кулоновское отталкивание и сблизиться для начала взаимодействия. Выбранные для этого методы и энергии остаются на выбор экспериментаторов.

В 2024 году завод «Лазеры и аппаратура» намерен произвести как минимум 60 лазерных станков. Другие московские производители также наращивают производство этой продукции.

В 2023 г. В 2022 — 145, в 2021 — 153, 2019 было 185 участников. По подсчетам Лазерной ассоциации, непосредственно изготовлением лазерно-оптической и оптоэлектронной продукции в России занимается 187 предприятий и НТЦ, в Беларуси — 15. Общий объем производства отечественной фотоники в 2023г.

Ростех и РАН создают уникальные лазеры для медицинских и досмотровых комплексов

Лазерная модификация деталей проводилась по индивидуально подобранным режимам лазерной обработки на оборудовании ЛК-5-В – собственной разработке компании «ТермоЛазер». Оборудование для лазерной обработки материалов. За 2022 год московская компания «Лазеры и аппаратура» нарастила производство лазерных установок почти в три раза — до двадцати четырех единиц. Анна Цыганцова, исполнительный директор группы компаний «Лазеры и аппаратура»: «Пятикоординатную установку мы разработали под конкретный проект, но, видя большой интерес отрасли, решили запустить ее в серийное производство. Инженеры столичного предприятия «Лазеры и аппаратура» разработали отечественные пятикоординатные лазерные станки для высокоточной обработки деталей, сложноконтурной резки и сварки.

Поставка медицинских лазеров для малоинвазивной хирургии по России

Яркое современное оформление стенда с предоставленными производителями интерактивными материалами привлекало внимание посетителей, помогая им легко находить нужные экспозиции. MARVEL PRO — это высокомощный станок для лазерной резки металла, качественные комплектующие от мировых производителей Германия, Япония, Франция , наличие сменного стола и усиленная цельносварная станина. Мощность: 12 кВт Максимальное ускорение: 3. Особенно посетителям выставки запомнились экспозиции с системой ручной лазерной сварки и очистки от IPG Photonics и с роботизированным комплексом от KUKA.

Для исследования на суперкомпьютерах того, что происходит при взрывах термоядерных зарядов, нужны данные о состоянии вещества при сверхвысоких температурах и давлениях, характерных для условий взрыва. Такие сведения можно получить как раз с помощью лазерного обжатия мишеней с исследуемым веществом. Поскольку подобные лазерные комплексы могут создать у себя считанное число стран, то они могут считаться одним из показателей технологического развития государства. Как сообщалось ранее, всего установка УФЛ-2М будет иметь 192 лазерных канала, то есть сможет создавать 192 лазерных луча, что необходимо для равномерного облучения мишени со всех сторон. Саровская установка для лазерного синтеза станет рекордсменом среди введенных и планируемых к строительству лазерных систем.

Топливо находится в оптическом центре рентгеновских и лазерных лучей. Концентрация энергии в сочетании с ударными и инерционными явлениями достигает такого значения, что ядра в топливе начинают сливаться и выделять энергию.

Для извлечения из всего этого практической пользы получаемая на выходе энергия синтеза должны быть выше уровня энергии, затраченной на зажигание. Впервые этого удалось добиться в декабре 2022 года. На мишень упало 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж. В то же время необходимо понимать, что на накачку лазеров и поддержку всего оборудования установки ушло на пару порядков больше энергии. Установка лишь показала, что положительный выход возможен на уровне реакции. Установка NIF Опыт был повторен 30 июля этого года. Значение энергии на выходе достигло 3,5 МДж по другим данным 3,88 МДж.

Это доказало, что декабрьский результат не был случайностью. Затем учёные ещё раз повторили реакцию в октябре и ноябре. Можно даже сказать, что термояд стал для них рутиной. Однако в каждом случае происходит набор данных по течению реакции и настройкам установки, что даёт ценный опыт для практического улучшения как установки, так и процесса. В конечном итоге к бесконечной и чистой термоядерной энергии можно будет прийти и по этой дороге, а не только по пути токамаков. За счёт инновации появилась возможность интегрировать прозрачные магнитные материалы в оптические схемы. Ранее это считалось весьма сложной задачей.

Новый процесс получения прозрачного магнитного материала. Источник изображения: Taichi Goto Исследователи из Университета Тохоку в Сендае Япония и Технологического университета Тойохаси в одноименном японском городе разработали новый метод создания прозрачных магнитных материалов с помощью лазерного нагрева. Это считается значительным достижением в области оптических технологий и представляет собой новый подход к интеграции магнитооптических материалов в оптические устройства. Таким образом, миниатюризация оптических устройств связи становится возможной. Магнитооптические изоляторы необходимы для стабильной оптической связи и выступают в качестве управляющих элементов, которые могут перемещать световые сигналы в одном направлении, но не в другом. Это позволяет обеспечить стабильную симплексную связь. Поскольку такая интеграция может быть достигнута только с помощью высокотемпературных процессов, решение этой проблемы долгое время считалось сложной задачей.

Профессор Гото и его коллеги решили эту проблему с помощью лазерной закалки. Это метод, при котором определенные участки материала нагреваются лазером очень избирательно. Такой нагрев позволяет осуществлять точный контроль места нагрева, поскольку нагреваются только выбранные участки, не затрагивая окружающие области. Кроме того, чтобы избежать химического воздействия окружающего воздуха на соответствующий материал, команда разработала новое устройство, которое нагревает материалы в вакууме с помощью лазера. Это позволит точно нагревать очень маленькие участки размером около 60 микрометров без изменения структуры окружающего материала. Профессор Гото и его команда ожидают, что «прозрачный магнитный материал, полученный с помощью этого метода, значительно улучшит разработку компактных магнитооптических изоляторов, которые необходимы для стабильной оптической связи». Новый метод также открывает «возможности для разработки мощных миниатюрных лазеров, дисплеев высокого разрешения и небольших оптических устройств», — резюмирует профессор.

Дальность передачи в 80 раз превысила расстояние между Землёй и Луной и составила 31 млн км. Скорость передачи оказалась заметно выше пропускных интернет-каналов на Земле. Видео по лучу загрузилось быстрее, чем его смогли получить в центре управления за несколько сот километров от приёмника. Экспериментальная лазерная установка связи не будет передавать на Землю какие-либо данные с научных приборов станции «Психея» Psyche. Видео высокого разрешения с котом одного из инженеров проекта было стилизовано под «космический» интерфейс с имитацией жизненных показателей кота по кличке Тейтерс, орбитальных траекторий станции и планет и другими фишками. Закодированный в лазерном луче сигнал принимался установкой, смонтированной на телескопе Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния. До Земли сигнал путешествовал в космосе 101 секунду.

На передачу видео в центр NASA в Южной Калифорнии потребовалось больше времени, чем сигнал шёл в открытом пространстве. Первый раз станция «Психея» установила лазерную связь с Землёй 14 ноября. Тогда она и центр управления обменялись техническими сигналами на расстоянии 16 млн км. А 11 декабря со станции на Землю впервые по лазерному каналу передали потоковое видео с максимальной скоростью передачи. Это было в 10—100 раз быстрее, чем если бы работать по радиоканалам. Возможность передавать данные с большей скоростью будет востребована во время путешествий к Марсу и дальше. Станция «Психея» как раз во время выполнения своей основной миссии в главном поясе астероидов между Марсом и Юпитером испытает лазерную связь на самом дальнем удалении Земли от Марса.

Во время тестовой передачи команда NASA смогла загрузить по лазерному каналу в общей сложности 1,3 Тбит данных. Лазерная связь между спутниками связи на орбите позволит абонентам на Земле обмениваться данными с малыми задержками, что позволит пассажирам самолётов, круизных лайнеров и жителям из отдалённых мест получить повсеместный быстрый интернет. Это тем более важно, что Amazon также будет предоставлять вычислительные и облачные ресурсы через сеть спутников, на которые военные также подписаны. В тестовом режиме по лазерному каналу на удаление 1000 км были переданы и приняты разнообразные данные, включая имитацию покупок в онлайн магазинах, просмотр видео в высоком разрешении и прогулки по сайтам. Компания Amazon не одинока в своём стремлении организовать лазерную связь в космосе. Спутники сети Starlink также обмениваются информацией с помощью лазеров. Работа оптических каналов в вакууме происходит с большей скоростью, чем по волоконным линиям, что добавляет им пропускной способности.

NASA также переходит на лазерную связь в космосе. Группировка Amazon Project Kuiper начнёт разворачиваться в первой половине 2024 года. Тестирование каналов связи начнётся позже в 2024 году, но только с избранными клиентами. Всего созвездие Kuiper будет насчитывать 3236 спутников. Это настоящий прорыв в области ускорителей частиц. Источник изображения: Bjorn «Manuel» Hegelich Учёные продолжают изучать возможности применения этой технологии, включая потенциал ускорителей частиц в полупроводниковой технологии, медицинской визуализации и терапии, исследованиях в области материалов, энергетики и медицины. Недавно группа учёных разработала компактный ускоритель частиц, получивший название «усовершенствованный лазерный ускоритель кильватерного поля».

Устройство при длине менее 20 метров генерирует электронный пучок с энергией 10 миллиардов электрон-вольт, утверждается в заявлении Техасского университета в Остине. Сам лазер работает в 10-сантиметровой камере, что значительно меньше традиционных ускорителей частиц, которым требуются километры пространства.

В экспозиции «Фотоника-2024» свою продукцию и услуги представят более 100 китайских компаний, среди которых — ведущие производители лазерного оборудования и комплектующих: Anhui Crystro Crystal Materials Co. Почетный президент Уханьской лазерной ассоциации «Оптическая долина» Китай , профессор Чжу Сяо: — Я надеюсь, что коллеги в лазерной промышленности Китая и России смогут совместно исследовать ключевые технологии цифровых промышленных лазеров и усилить прикладные исследования цифрового промышленного лазера высокой мощности.

Это позволит лазерной обработке лидировать в развитии технологий и других сферах во всем мире. Организаторами выступят Лазерная ассоциация и АО «Экспоцентр». Ключевым мероприятием станет XII Конгресс технологической платформы «Фотоника», в рамках которого пройдут 19 научно-практических конференций по отраслевым темам: лазерная макрообработка промышленных материалов, полупроводниковая фотоника и нанофотоника, контрольно-измерительные и диагностические технологии фотоники, оптические узлы и компоненты фотоники, фотоника в сельском хозяйстве, волоконные световоды и волоконно-оптические компоненты, голографические технологии, лазерная микрообработка в микроэлектронике, приборостроении, гравировке и маркировке, оптическая сенсорика, квантовые технологии, метрологическое обеспечение фотоники, волоконно-оптические линии связи и их комплектующие, лазерные информационные системы, радиофотоника, оптико-электронные системы и компоненты, фотоника в медицине и науках о жизни и т. Темами докладов станут: «Полупроводниковые лазеры», «Квантовые вычисления с одиночными нейтральными атомами», «Оптические волокна в фотонике».

Китайские ученые разрабатывают лазерный двигатель для сверхзвуковых подводных лодок

Новости номинантов: ГК «Лазеры и аппаратура» разработала новую лазерную DMD-установку В компанию MCLaser прибыл очередной контейнер (40HC) с большим количеством лазерных станков, резаков, граверов, маркеров и комплектующих для лазерного оборудования.
ОТКРОЙ #МОСПРОМ ОНЛАЙН. Выпуск о ГК "Лазеры и аппаратура" Созданный в корпорации «Росатом» промышленный лазер, режущий металл как масло, поражает воображение.
Московский производитель выпустил 42 лазерных станка в 2023 году Группа компаний «Лазеры и аппаратура» запустила серийное производство лазерных технологических комплексов в Зеленограде.
Московский производитель выпустил 42 лазерных станка в 2023 году Оборудование для создания аддитивным методом продуктов из порошковых полимеров начала производить в столице группа компаний "Лазеры и аппаратура".

Поставка медицинских лазеров для малоинвазивной хирургии по России

На АЭХК испытали мобильный лазерный комплекс производства ТРИНИТИ Оборудование для лазерной обработки материалов.
Предприятие «Лазеры и аппаратура» создало лазерный станок для высокоточной обработки деталей В данном разделе представлены нано-, пико-, фемтосекундные лазеры, приборы с перестраиваемой длиной волны, высокоэнергетические промышленные системы.

Китайские ученые разрабатывают лазерный двигатель для сверхзвуковых подводных лодок

На сегодняшний день промышленные лазерные станки бренда работают более чем на 300 предприятиях в России и за рубежом. Миссия группы компаний «Лазеры и аппаратура» — производить промышленное оборудование мирового уровня для эффективной работы.

Предприятие занимается производством лазерного сварочного, режущего и аддитивного оборудования, в том числе 3D-принтеров для печати металлами по технологии прямого подвода энергии и порошковых материалов. За одиннадцать месяцев 2022-го года они в полтора раза нарастили выпуск техники. Например, компания «Лазеры и аппаратура» за прошлый год произвела в три раза больше лазерных установок, чем годом ранее. Таких показателей удалось достичь за счет расширения модификаций выпускаемой продукции и развития поставок на внутренний рынок», — рассказал руководитель столичного департамента инвестиционной и промышленной политики Владислав Овчинский.

Они могут обрабатывать металл или сваривать детали так, что шов получается прочный и практически незаметный. А если надо что-то разрезать - лазерный станок сделает это быстро и очень точно. Лазерный 3D-гравер — станок, который способен заменить ручной труд ювелиров. С помощью лазерного луча с высокой точностью он снимает тонкие слои заготовки и создает сложнейшие узоры. Подойдет для производства монет, украшений и сувениров из драгоценных металлов. Это станок для резки и гравировки фанеры, пластика, стекла, акрила и даже резины. Он тоже отечественного производства.

X Файлы cookie представляют собой файлы или фрагменты информации, которые могут быть сохранены на Вашем компьютере или других интернет-совместимых устройствах конечного пользователя например, смартфонах и планшетах при посещении Вами наших веб-сайтов или использовании наших веб-сервисов. Эта информация в большинстве случаев представлена в виде алфавитно-цифровых строк, которые однозначно идентифицируют Ваш компьютер или конечное пользовательское устройство, однако может содержать и иные сведения.

Производство умных лазерных машин запустили в Зеленограде

Специалисты Владимирского инжинирингового центра использования лазерных технологий в машиностроении при ВлГУ разработали комплекс обнаружения и обезвреживания малоразмерных беспилотников с помощью лазера. Инженеры столичного предприятия «Лазеры и аппаратура» разработали отечественные пятикоординатные лазерные станки для высокоточной обработки деталей, сложноконтурной резки и сварки. Специалисты столичной компании «Лазеры и аппаратура» разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем. Группа компаний «Лазеры и аппаратура», ведущий российский производитель лазерных станков и номинант Национальной премии в области передовых технологий «Приоритет-2021», разработала и поставила промышленную лазерную DMD-установку для порошковой наплавки.

В России запустили производство лазерных станков для печатных плат

Власти Израиля официально опровергли применение боевых лазеров, однако не исключено, что установки задействуют в ближайшем будущем. У берегов Сахалина Росатом и Tazmar Maritime с помощью мобильного лазера утилизируют затонувшие суда В рамках федерального проекта «Генеральная уборка» эксперты Госкорпорации «Росатом» приступили к работам по утилизации затонувших кораблей на берегу г. Корсаков о.

Для этого машина будет сама выбирать нужный режим работы. Новая установка будет использоваться для выпуска металлических изделий сложной формы, сварки корпусов приборов, изготовления датчиков и другого оборудования. Умная машина может самостоятельно определять необходимый режим работы. Владислав Овчинский, глава департамента инвестиционной и промышленной политики Москвы: «Интеллектуальная установка может самостоятельно определять алгоритм работы, исходя из заданных условий и загруженных в нее чертежей. Например, с какой стороны начать резку или сварку детали.

Госкорпорация Ростех — крупнейшая промышленная компания России. Объединяет порядка 800 научных и производственных организаций в 60 регионах страны. Ключевые направления деятельности — авиастроение, радиоэлектроника, медицинские технологии, инновационные материалы и др.

Продукция корпорации поставляется более чем в 100 стран мира. Почти треть выручки компании обеспечивает экспорт высокотехнологичной продукции.

В этом году компания планирует выпустить 60 станков. Почему это важно Промышленные лазерные станки используются во всех областях высокоточного производства. Без такого оборудования невозможно обеспечить развитие современной индустрии. В условиях импортозамещения спрос на отечественные лазерные станки в России, Белоруссии и других странах резко вырос. Поэтому наращивание объемов производства — необходимый и важный для экономики страны этап.

Московская компания «Лазеры и аппаратура» в 2023 году в разы увеличила выпуск станков

На выставке будет представлено оборудование для лазерной сварки, лазерной наплавки и лазерной гравировки. Сконструированный лазер будет применяться для реализации серии опытов по контролируемому термоядерному синтезу и исследований ранее неизученных свойств материалов при экстремальных температурах и давлении. Устройства используются в составе радиостанций, радиодальномеров и радиовысотомеров, в аппаратуре шифрования сигналов, маршрутизаторах доступа, бортовом оборудовании летательных аппаратов и радиолокационных станциях.

Производитель лазерного оборудования из Москвы нарастил производство в 2023 году

Поставка медицинских лазеров для малоинвазивной хирургии по России Специалисты инженерного центра группы компаний «Лазеры и аппаратура» запустили серийное производство новой модификации аддитивного оборудования для промышленной 3D-печати с системой машинного зрения собственной разработки.
Главная - Плазма В прошлом году компания «Лазеры и аппаратура» наладила серийное производство новой модификации аддитивного оборудования для промышленной 3D-печати металлами с системой машинного зрения.

Похожие новости:

Оцените статью
Добавить комментарий