Новости применение искусственного интеллекта в медицине

Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.

Что такое искусственный интеллект

  • ИИ в медицине: тренды и примеры применения
  • Третье Мнение - искусственный интеллект в здравоохранении
  • Искусственный интеллект в медицине: применение и перспективы
  • Искусственный интеллект в медицине: применение и перспективы
  • Собянин: ИИ превратится в базовую медицинскую технологию в Москве // Новости НТВ
  • Направления деятельности и рабочие группы

Применение ИИ в медицине

  • Столичные алгоритмы
  • Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время
  • Как работают нейронные сети в медицинской сфере?
  • Машины лечат людей: как нейросети используют в российской медицине
  • Видео: Как искусственный интеллект помогает в медицине | Новости России

Искусственный интеллект в медицине. Настоящее и будущее

Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины

Применение искусственного интеллекта в московском здравоохранении

Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.

Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли

Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью.

Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой.

При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному.

Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок.

Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев. Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза.

Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.

Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы.

Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов.

Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса.

Этот проект базируется на анализе электронных медкарт. А еще один проект — персональная комплексная диагностика пациента, которая также будет основана на изучении ИИ его медкарты. Пример такого проекта мы реализовывали в 2022 году вместе с правительством Москвы.

Речь идет о проекте диагностического ассистента. Разработанная модель ИИ анализирует всю содержащуюся в медкарте информацию: жалобы, результаты инструментальных и лабораторных исследований, анамнез, описание заключений — и выдает второе мнение врачу. Модель обучалась на обезличенных данных более чем на 30 млн визитов пациентов», - поделилась Елена Соколова из лаборатории искусственного интеллекта «Сбера». В медицине большинство сервисов для обработки диагностических изображений ориентировано на лучевое исследование, говорит Анна Мещерякова, гендиректор компании «Платформа «Третье мнение»: «Уровень зрелости этого направления самый высокий: данные — цифровые, инфраструктура наиболее готова к внедрению ИИ. Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики».

Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года. Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова. Барьеры для внедрения ИИ Вопреки всем успехам, реального внедрения серьезных, глубоких систем поддержки принятия врачебных решений на федеральном уровне очень мало, подытожил руководитель экспертной группы «Цифровые технологии в медицине» при АНО «Цифровая экономика», гендиректор ассоциации «НБМЗ» и руководитель направления цифровой медицины компании «Инвитро» Борис Зингерман. По его мнению, сейчас ИИ охотнее всего доверяют сами пациенты.

А у пациентов нет медобразования, и они рады любой помощи и подсказке от искусственного интеллекта», — отметил Борис Зингерман. Сложнее ситуация обстоит в здравоохранении в субъектах. На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ.

Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи.

Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка.

Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток. Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей. Что будет, если мы добавим какое-то одно лекарство? А другое, третье или комбинацию препаратов? Мы прогнозируем, какие средства подействуют лучше и как они перекликаются. В первую очередь на астму и диабет.

Human Diagnosis project направлен на создание наиболее полной базы, способной составить алгоритм помощи любому пациенту.

Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных. Главной задачей этого проекта является создание системы умственного ассистента для лучевых диагностов и кардиологов, которая бы действовала как фильтр и быстро обнаруживала аномалии, используя общий анализ изображений, текста и клинических данных. Израильская компания MedyMatch разрабатывает ИИ, способный оценивать компьютерные томограммы и находить любые отклонения от нормы. MaxQ будет применяться в первую очередь для ранней диагностики травм черепа, инсульта и определения его вида геморрагический или ишемический в машинах неотложной помощи, что позволит медицинскому персоналу быстрее начать лечение. ИИ для пациентов Использование ИИ не ограничивается его применением медицинскими сотрудниками - также нейронные сети могут оказывать помощь пациентам. Существует «приложение-медсестра» - Sense. На экране телефона пациента появляется анимированная медсестра, которая задает вопросы о самочувствии, узнает нет ли жалоб.

Приложение может сразу отправить результаты опроса врачу, напомнить о приеме лекарств, помочь в случае необходимости связаться с доктором по видеосвязи. Для людей, страдающих сердечно-сосудистыми заболеваниями разработана программа AliveCor, способная делать запись ЭКГ в любом месте с помощью смартфона и специальных детекторов, а после сообщать об отклонениях. В первую очередь, ИИ направлен на выявление аритмий. Еще одним полезным мобильным приложением является Babylon Health, позволяющим из любой точки Земли и в любое время получить онлайн-консультацию врача со стажем не менее 10 лет. А чат-бот поможет предварительно по симптомам, которые ему опишет пациент, поставить диагноз, а также даст краткую справку об этом заболевании. ИИ для распознавания заболеваний по фотографиям Создаются программы, которые с помощью анализа фотографии и сопоставления их с загруженной базой данных, смогут обнаружить наличие патологии. Face2Gene - это основанная на ИИ программа, позволяющая диагностировать по фотографии многие генетические заболевания.

Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований

В целом российскому обществу присущ умеренный энтузиазм по вопросу использования ИИ в здравоохранении. По-видимому, ИИ еще не успел заработать себе «антирейтинг» в этой сфере, в том числе потому, что значимая часть россиян еще не сформировала своей позиции на этот счет. Тогда как в американском обществе вопрос применения ИИ в медицине стоит более остро: здесь есть противоборство мнений, доли оптимистов и скептиков близки. Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях. Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом. Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран.

В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению.

Нейронные сети в помощь врачам Глубокие нейронные сети DNN могут помочь в интерпретации медицинских сканов патологий, электрокардиограмм, эндоскопии.

Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний.

Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами.

В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты.

Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись. После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов.

А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных. Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств. Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет.

Впрочем, без человека пока еще не обойтись. После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность.

Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных. Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств.

Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты.

Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов.

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы

Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе. искусственный интеллект в медицине, искусственный интеллект. Рост применения КТ приводит к выявлению большого количества очагов и округлых образований в легких. Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области.

Еще по этой теме

  • Мы рекомендуем
  • Подписка на дайджест
  • Мы рекомендуем
  • Мы рекомендуем
  • Журнал «Московская медицина» - Применение искусственного интеллекта в московском здравоохранении

Похожие новости:

Оцените статью
Добавить комментарий