Новости коэффициент джини по странам

По данным Росстата, в 2023-м году в стране коэффициент Джини вырос до 0,403 против 0,395 годом ранее. News. About. HDRO Team. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года): Коэффициент Джини карта.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Коэффициент Джини (Gini coefficient) — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Коэффициент Джини. Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее.

Gini Coefficient

При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор.

Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.

График начинает выглядеть по-иному. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини. Если доходы равны, графики совпадут, а коэффициент будет равен нулю. Если доходы сосредоточит только одна доля населения, то коэффициент станет равен единице. Вот в этих пределах неравенство и считают. Есть и численные формулы для подсчёта, но, думаю, интересующиеся их найдут и сами.

Богатые используют деньги в качестве инструмента обогащения. У бедных же денег нет, и большинство из них тонут в болоте кредитов, из-за чего они становятся ещё беднее. Тут, конечно, нужен пример. Смотри, допустим есть 5 человек: Вася Пупкин капитал 20 рублей Иван Иванов капитал 2 000 рублей Средняк Средняков капитал 20 000 рублей Игорь Альфаинвестор капитал 2 000 000 рублей Вагит Алекперов капитал 200 000 000 000 рублей Прошёл год. Вася и Иван, не имея средств к существованию, перебивались мелкими подработками, мелкими кражами и потребительскими кредитами. В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает. Зарплату ему увеличили на сумму инфляции и теперь в конце месяца его капитал составляет 22 000 рублей. Учитывая инфляцию, он остался на том же уровне благосостояния, в отличие от Васька и Ванька, влезших в кредиты. Игорь и Вагит инвестировали свои капиталы в акции и ETF. Оба получили хорошую доходность. Игорь получил больше в процентах на капитал. Из этого примера видно, насколько тяжело бедным не стать беднее, и насколько просто богатому стать богаче. Даже ничего не делая, получая мизерный процент на многомиллиардный капитал, ты всё равно за отрезок времени разбогатеешь на большую сумму, чем человек с миллионом, организовавший суперприбыльный бизнес, и работающий как белка в колесе. В данном примере есть ещё один показательный персонаж — Средняк Средняков. Он олицетворяет собой человека, живущего от зарплаты до зарплаты. Он не становится беднее, но и богаче тоже не становится. Хотя он находится в той позиции, когда ему намного легче, чем Васе или Ивану начать инвестировать, двигаясь в сторону жизни, когда «деньги делают деньги, которые делают деньги, которые делают деньги, которые… и т. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту попасть в ситуацию, в которой находятся Вася и Иван.

Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку коэффициент Джини пытается сократить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии исключительно по длине вдоль одного края или простому среднему значению яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами внутри распределения, например распределение доходов по возрасту, расе или социальным группам. В этом ключе понимание демографических данных может быть важным для понимания того, что представляет данный коэффициент Джини. Например, большая часть пенсионеров повышает индекс Джини. Похожие статьи.

Штаты США по коэффициенту Джини

Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях.

Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини.

Aggregation Rules include: 1. Max: Aggregates are set to the highest available value for each time period.

Mean: Aggregates are calculated as the average of available data for each time period. Mean 66: Aggregates are calculated as the average of available data for each time period. Values are not shown if more than one third of the observations in the series are missing. Median: Aggregates are calculated as the median of available data for each time period. Median 66: Aggregates are calculated as the median of available data for each time period.

Values are not computed if more than a third of the observations in the series are missing. Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period.

За ним следуют Аляска, Вайоминг и Нью-Гемпшир с показателями 0, 422, 0, 423 и 0, 425 соответственно. Округ Колумбия и Нью-Йорк имеют самые высокие различия в доходах между наемными работниками во всех категориях доходов с коэффициентом Джини 0, 532 и 0, 499 соответственно. Другие государства, которые также показали большие различия, включают Коннектикут, Массачусетс и Луизиану. Неравенство в доходах значительно выросло за последние четыре десятилетия во всех штатах США.

Свободный рынок и капитализм и менее прогрессивные расходы на социальные услуги являются одними из факторов, способствующих неравенству в доходах Причины неравенства в доходах в США Союз и коллективные переговоры очень низки почти во всех штатах США. Дешевая рабочая сила в Китае и несправедливые обменные курсы также являются фактором, способствующим неравенству с высокими доходами в большинстве штатов. Государственная налоговая политика принесла больше пользы инвесторам, чем людям с низким доходом.

Для его расчета, как правило, используется уровень годового дохода граждан, но иногда могут применяться дополнительные параметры например, сбережения, дорогостоящие активы, недвижимость и т. Индекс Джини: расчет и формула Коэффициент Джини рассчитывается по следующей формуле: В графическом отображении коэффициент Джини представляет собой соотношение площади фигуры, образованной линией абсолютно равномерного распределения доходов под 45 градусов и кривой Лоренца, отображающей неравномерность распределения, к общей площади треугольника, образованной линиями абсолютно равномерного и абсолютно неравномерного распределения доходов: В десятичном значении показатель выступает коэффициентом, также его могут отображать в процентах, тогда он становится индексом. Расчетом данного показателя занимаются статистические ведомства и международные аналитические организации. Значения и трактование коэффициента Джини Коэффициент Джини может иметь значение от 0 абсолютно равномерное распределение доходов до 1 абсолютно неравномерное распределение доходов.

Human Development Insights

Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные. 28 фев в 21:49. Пожаловаться. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Индекс Джини по странам: коэффициент концентрации доходов.

Росстат отметил рост доходного неравенства в России

GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. News turk | новости турции. (Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой.

В России зафиксирован рост доходного неравенства

- экономические и финансовые данные Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий.
Коэффициент Джини - индекс концентрации доходов — Тюлягин Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.
Неравенство и экономический рост в регионах России Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини.
Индекс концентрации Джини - Студенческий научный форум News turk | новости турции.
Список стран по показателям неравенства доходов Различия в равенстве доходов в разных странах по коэффициенту Джини.

Штаты США по коэффициенту Джини

вы делаете те новости, которые происходят вокруг нас. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом. News turk | новости турции. Социологи и экономисты оценивают реальные доходы людей в стране, а потом сравнивают их с «идеальным» миром, в котором коэффициент Джини равен нулю. News turk | новости турции.

Коэффициент Джини (распределение дохода)

Как правило, в таких экономиках, как экономика США, отдельное домохозяйство за свою жизнь успевает побывать в нескольких категориях распределения доходов. И связано это с высокой экономической мобильностью. Так, например, какое-т домохозяйство может в одном году входит в группу с самым низким уровнем дохода, а следующем году уже в группу со средним уровнем доходов. Кривая Лоренца и коэффициент Джини также не учитывают данный эффект. В-третьих, индивиды могут получать трансферты в натуральной форме, которые не отражаются в кривой Лоренца, хотя при этом влияют на распределение доходов индивидов. Трансферты в натуральной форме могут быть реализованы в виде помощи беднейшим слоям населения продуктами питания, одеждой, но обычно они предоставляются в виде многочисленных льгот бесплатный проезд в общественном транспорте, бесплатные путевки в санатории и так далее. С учетом подобных трансфертов экономическое положение беднейших слоев населения улучшается, но кривая Лоренца и коэффициент Джини этого не учитывают. Не так давно в России многие льготы были монетизированы, и объективные доходы беднейших слоев населения стало считать легче. Следовательно, кривая Лоренца стала лучше отражать реальное распределение доходов в обществе.

Данные показатели используются для оценки степени неравенства доходов, и входят в область позитивного экономического анализа. Напомним, что позитивный анализ отличается от нормативного анализа тем, что позитивный анализ анализирует экономику объективно, как есть, а нормативный анализ является попыткой улучшить мир, сделать «как должно быть». Если оценка степени неравенства является позитивным экономическим анализом, то попытки снизить неравенство в распределении доходов принадлежат к области нормативного экономического анализа. Нормативный экономический анализ известен тем, что разные экономисты могут предложить разное, часто диаметральное противоположные рекомендации по решению одной и той же проблемы. Это не означает, что кто-то является более компетентным, а кто менее компетентным. Это только означает, что экономисты отталкиваются от различных философских взглядов на понятие справедливости, а единства в этом вопросе нет. Сначала мы рассмотрим различные существующие системы ценностей, а затем покажем, каким образом можно обеспечить более справедливое распределение доходов в рамках каждой системы. Государство сейчас выступает не только в качестве устранителя рыночных провалов, о которых мы активно говорили в прошлой главе внешние эффекты и предоставление общественных благ , но и в качестве стимулятора экономики, когда экономика испытывает трудные времена.

Налоги являются основным источником доходов государства. Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства. Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь.

Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А.

Но при этом в некоторых развитых странах, например в США, коэффициент Джини высок. Это считают аномалией закона. Еще мы писали, что в Беларуси на АЗС с 19 мая начнут продавать дизтопливо по 3,58 белорусского рубля за литр.

In collating this survey data the World Bank takes a range of steps to harmonize it where possible, but comparability issues remain. The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them.

The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable. The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty. You can select to see these breaks for any indicator in our Data Explorer of the World Bank data. These spells are also indicated in our data download of the World Bank poverty and inequality data.

Те, кто сегодня находится у власти, в том числе и в министерских кабинетах, в 90-х уничтожали, разворовывали страну, всё то что люди строили дважды, после Гражданской, после Отечественной... К 00-ым страна была освоена и поделена, и те, кто "заработал" на уничтожении промышленности, сельского хозяйства начали строить свой бизнес, осваивая уже людской ресурс. Что сделал Путин?

Вопрос можно поставить иначе...

Коэффициент Джини по странам.

Некоторые равнее: что такое коэффициент Джини и зачем он нужен Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3.
Коэффициент Джини. Формула. Что показывает Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку.
Доверять Джини или нет: вот в чем вопрос Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини.
Индекс Джини в странах мира Индекс Джини это тот же коэффициент Джини, только значения здесь выражены в процентах.
Индекс Джини по странам: коэффициент концентрации доходов Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения).

Gini Coefficient By Country

Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это.

Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление.

Как рассчитать эту метрику? Она не равна своему родственнику из экономики.

Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения. Наиболее часто в современных экономических расчётах в качестве изучаемого признака берётся уровень годового дохода. Коэффициент Джини можно определить как макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Индекс Джини и неравенство доходов Индекс Джини и неравенство доходов 21 Ноября 2022 Алексей Иртюго Продолжая серию статей, посвященных оценке ВВП и размера экономик стран, а также связанного с этими показателями уровня жизни или абстрактного «развития», нельзя не затронуть тему распределения производимых благ, поскольку эта тема часто становится последним аргументом в спорах об оценках ВВП различных стран. Принято считать, что чем ВВП страны выше — тем страна богаче, а значит богаче и люди, проживающие в этой стране. Если в отношении страны в целом такое утверждение верно, хоть и с некоторыми оговорками, то в отношении людей, проживающих в ней, не всегда. Все дело в распределении благ. Все помнят про «среднюю температура по больнице», и ВВП — это тот статистический показатель, для которого эта аллегория точно подходит. Оценивая ВВП двух стран, когда речь идет о ВВП на душу населения, то есть уровне развития, нельзя не учитывать равномерность распределения доходов в экономике. В противном случае может получиться, что на бумаге страна богаче, а большая часть населения живет в ней беднее, чем в другой, где средняя величина ниже, но распределение более равномерное. Индекс Джини Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов — кривой Лоуренса. Пример кривой Лоренца приведен на изображении ниже.

Опрос показал, что средний годовой располагаемый доход домохозяйства в 2020 году составил 69 тыс. Средний годовой эквивалентный располагаемый доход домохозяйства из нескольких человек без семьи составил 38 тыс.

Список стран по равенству доходов

Иным способом расчета коэффициента является геометрический метод. А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2].

И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов.

Demographics Global Inequality Quantified - The Gini Coefficient Income and wealth inequality remains a global concern with varying levels of disparity seen across countries. The Gini coefficient, a measure used by economists, offers a numerical representation of this distribution. The Gini coefficient, thus, forms a comprehensive tool to understand, compare and consequently challenge economic disparities globally. As per the latest data, the United States had a Gini coefficient of 41. Key findings from the data include: South Africa had the highest Gini coefficient at 63.

Перейти к навигации Перейти к поиску Общий вид кривой Лоренца Коэффициент Джини коэффициент концентрации доходов — статистический показатель, который используют для характеристики степени отклонения линии фактического распределения Кривая Лоренца общего объёма денежных доходов населения от линии их равномерного распределения. Величина коэффициента ограничена промежутком от ноля до единицы — чем выше значение показателя, тем более неравномерно распределены доходы в обществе [1]. Индекс Джини — процентное представление этого коэффициента.

В России картина чуть лучше , но и у нас проблема неравенства стоит остро. Малая часть населения получает львиную долю благ, тогда как большинство делит остатки. Чтобы оценить экономическое неравенство, используют коэффициент Джини. Это статистический показатель, который говорит о степени расслоения общества по какому-то признаку, чаще всего речь идет о доходах и богатстве людей. Рассмотрим этот показатель, а также кривую Лоренца, и узнаем, что они говорят об экономике страны. Рассылка Т—Ж о мире инвестиций Лайфхаки о том, как делать деньги из денег, — в вашей почте раз в неделю.

Похожие новости:

Оцените статью
Добавить комментарий