Выставка «Связь» проходит с 23 по 26 апреля в Центральном выставочном комплексе «Экспоцентр» в Москве. Система лазерной космической связи может быть в 10–100 раз эффективнее существующей радиочастотной технологии.
Лазерный эксперимент НАСА DSOC передал технические данные с расстояния 226 миллионов километров
Этот аспект особенно важен для чувствительных миссий и связи с секретной информацией. Кроме того, лазерная связь позволяет создавать более гибкие наземные системы, обеспечивая лучшую адаптивность и масштабируемость сетей связи. После прибытия полезная нагрузка была установлена на японском экспериментальном модуле-объекте станции. Доктор Джейсон Митчелл Jason Mitchell , директор отделения передовых технологий связи и навигации SCaN, выразил свое волнение по поводу этого достижения, заявив: «Лазерная связь не только позволит получать больше данных от научных миссий, но и может стать важнейшим двусторонним каналом связи НАСА, который позволит астронавтам поддерживать связь с Землей во время исследований Луны, Марса и других миров».
Эти слова подчеркивают важность лазерной связи для обеспечения бесперебойной связи между астронавтами и диспетчерами во время будущих полетов в дальний космос.
После прибытия, груз был установлен на внешней области станции. Благодаря этим компонентам, возможно осуществление дальнейшей навигации и сопровождения LCRD, расположенного на геосинхронной орбите. Оптический модуль ILLUMA-T имеет размеры, сравнимые с микроволновой печью, а его полезная нагрузка соответствует стандартному холодильнику. Лазерная связь не только обеспечит передачу колоссальных массивов данных с научных миссий, но также послужит надежным средством коммуникации между астронавтами и Землей во время исследования Луны, Марса и дальних границ космоса — доктор Джейсон Митчелл, директор дивизиона по передовым коммуникационным и навигационным технологиям SCaN. Сразу после монтажа оборудования, инженеры приступили к проведению испытаний и контрольных проверок с целью убедиться в нормальной работе ILLUMA-T.
В настоящее время они осуществляют обмен данными с LCRD, ретранслятором, запущенным в 2021 году, который провел более 300 экспериментов по совершенствованию технологий лазерной связи в рамках программы NASA. Лазерная связь может изменить всю парадигму исследований для ученых на Земле, занимающихся научными и технологическими исследованиями на борту космической станции. Астронавты проводят исследования в различных областях, таких как биологические и физические науки, технологии, наблюдение Земли и многое другое, в орбитальной лаборатории во благо всего человечества.
Если мы пропустим очередь, нам придется заново договариваться с Союзом электросвязи. И здесь надо учитывать, что в Бюро радиосвязи МСЭ после нас заявлено еще где-то 280 систем со всего мира, так как многие идут по этому пути». Параллельно подготовке демонстратора запуск осенью 2022 г. Планируется, что пропускная способность одного аппарата «СКИФ» составит 150 гигабит в секунду, соответственно вся система может считаться группировкой террабитного класса. В первую очередь «СКИФ» предназначен для снабжения скоростным интернетом малодоступных и удаленных районов страны, а также судов, передвигающихся по Северному морскому пути. Сборка демонстратора будет проходить в ИСС имени М.
Запущенный аппарат должен будет в тестовом режиме подтвердить работоспособность всей концепции. Своевременная передача сигнала — об утечках, возгораниях и других неполадках — через космос позволит предотвратить техногенные и экологические катастрофы в нефте- и газодобыче, химической и лесной промышленности, сельском хозяйстве и других отраслях. Предполагается разместить 264 спутника в 12 орбитальных плоскостях на высоте 750 км. Этого достаточно, чтобы осуществлять глобальное покрытие всей территории Земли и обеспечивать передачу данных от десятков миллионов абонентов. От лазерной связи до цифровой полезной нагрузки Отработка технологий — другая важная составляющая первого этапа «Сферы». Намечено несколько научно-исследовательских работ НИР. Одна из них — «Лазер» — предусматривает создание высокоскоростных каналов оптической связи. Передача больших объемов данных актуальна не только для телекоммуникационных спутников, но и для космических аппаратов, ведущих съемку Земли. Одна из идей предполагает переброску результатов съемки не напрямую, а через другой спутник: например, из среднеорбитальной группировки системы «СКИФ» или геостационарный спутник-ретранслятор.
В этом плане лазерная связь является одной из самых перспективных по скорости передачи данных и конфиденциальности. В рамках НИР «Лазер» планируется разработка двух терминалов межспутниковой связи, а в последующем — наземного оборудования для связи «космос — Земля». В рамках другой работы — «Типоряд» — будет вестись поиск технологий создания масштабируемых унифицированных спутниковых платформ для группировок связи и ДЗЗ. Идеология проста: несмотря на разную специфику, космические аппараты должны базироваться на одних и тех же технических решениях. Тем не менее все эти спутники относятся к малым, и для них будет создана линейка унифицированных платформ». Работой по «Типоряду», в которой участвуют как предприятия Роскосмоса, так и частные компании всего около десяти организаций , руководит генеральный конструктор по автоматическим космическим комплексам и системам Виктор Хартов.
Что это значит? Как пишет газета «Страна Росатом», космическая лазерная связь будет передавать информацию по световому каналу с Земли на низкоорбитальные спутники.
Большие внешние поля, из-за чего легко перехватить информацию. Забиты уже все радиочастоты, из-за чего получить канал — непростая процедура. Лазерная связь, по словам Григоровича, поможет всё это решить: Частота колебаний высокая, и можно передавать по одному каналу до 100 Гб; Узкая направленность лазерного луча, в космосе он не рассеивается, и перехватить его практически невозможно.
Что за эксперимент с космической лазерной связью задумали в России?
Сообщается, что предыдущий рекорд дальности передачи стабильного лазерного луча значительно превзойден. Ее спутники Starlink начали использовать лазерную связь для обратной связи. НАСА планирует важный шаг к достижению этой цели, запустив и протестировав свою первую двустороннюю сквозную лазерную систему связи. Лазерная связь относится к беспроводным оптическим системам связи и является одним из самых актуальных направлений. Лазерная связь сильно зависит от атмосферных показателей, с радиосвязью же вопрос давно изучен и отработан», — заключил эксперт. Launching this year, NASA’s Laser Communications Relay Demonstration (LCRD) will showcase the dynamic powers of laser communications technologies. With NASA’s.
Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров
Лазерная связь, также известная как оптическая связь, использует инфракрасный свет, а не традиционные радиоволны для отправки и приема сигналов. Более узкая длина волны инфракрасного света позволяет космическим аппаратам передавать больше данных. Лазерная связь значительно повышает эффективность передачи данных.
Аэрокосмический гигант в сотрудничестве с голландской компанией VDL Group разработает и внедрит принципиально новую систему связи под названием UltraAir. Технология позволит воздушным судам обмениваться большими объёмами данных с помощью лазерных лучей через сеть наземных станций и спутников на геостационарной орбите 36 000 км над Землёй. Применять разработку планируется, в том числе, в военной сфере. Передача данных ускорится примерно в 10 раз.
Airbus Согласно официальному пресс-релизу Airbus, технология основывается на разработках Нидерландской организации прикладных научных исследований TNO. Демонстратор лазерной системы связи планируется подготовить к 2024 году.
Доктор Джейсон Митчелл Jason Mitchell , директор отделения передовых технологий связи и навигации SCaN, выразил свое волнение по поводу этого достижения, заявив: "Лазерная связь не только позволит получать больше данных от научных миссий, но и может стать важнейшим двусторонним каналом связи НАСА, который позволит астронавтам поддерживать связь с Землей во время исследований Луны, Марса и других миров". Эти слова подчеркивают важность лазерной связи для обеспечения бесперебойной связи между астронавтами и диспетчерами во время будущих полетов в дальний космос. Эта программа призвана продемонстрировать огромный потенциал лазерных коммуникационных технологий для повышения эффективности научных и исследовательских миссий. Поскольку NASA продолжает расширять границы освоения космоса, лазерная связь, несомненно, будет играть жизненно важную роль в обеспечении бесперебойной и эффективной связи между Землей и космосом.
Как DSOC впервые будет использован для тестирования высокоскоростной передачи данных за пределы лунной орбиты и как это может изменить исследование дальнего космоса. После этого можно будет продемонстрировать высокую пропускную способность передачи данных от приемопередатчика к Паломару на различных расстояниях от Земли. Эти данные имеют форму битов, закодированных в фотонах — квантовых частицах света, излучаемых лазером. Цель эксперимента DSOC — продемонстрировать скорость передачи данных, в 10-100 раз превышающую возможности современных радиочастотных систем, используемых сегодня на космических аппаратах. Оптическая связь уже была продемонстрирована на низкой околоземной орбите и на Луне, но DSOC — это первое испытание в дальнем космосе.
Airbus внедрит высокоскоростную лазерную связь
Системы лазерной связи упаковывают данные в колебания световых волн в лазерах, кодируя сообщение в оптический сигнал, который передаётся на приёмник через инфракрасные лучи. Опыт по созданию терминалов лазерной связи АО «НПК «СПП» и результаты космического эксперимента «Система лазерной связи» (КЭ СЛС) могут быть использованы для дальнейших. В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса.
Лазерный эксперимент НАСА DSOC передал технические данные с расстояния 226 миллионов километров
Лазерная связь обеспечивает большую гибкость миссии и быстрый способ доступа к данным из космоса. Как объяснили ученые, современные системы подводной лазерной связи имеют высокую стоимость и способны поддерживать широкий канал связи только на небольших дистанциях. Российские учёные и инженеры успешно установили связь с микроспутником «Импульс-1», который был разработан для изучения Солнца и проверки лазерной спутниковой связи. Эксперимент НАСА "Оптическая связь в глубоком космосе" (DSOC) призван проложить путь к использованию лазерной связи для передачи данных из глубокого космоса.
Британцы испытали лазерную связь для беспилотников
Выставка «Связь» проходит с 23 по 26 апреля в Центральном выставочном комплексе «Экспоцентр» в Москве. Для «Системы лазерной связи» (КЭ «СЛС») возможно и перспективно применение оптоэлектронных процессоров для увеличения скорости передачи данных. Лазерная связь может обеспечить высокоскоростную передачу данных с Марса, что очень важно для будущих колонистов.
В МФТИ создан терминал космической лазерной связи
Лазерная связь, по словам Григоровича, поможет всё это решить: Частота колебаний высокая, и можно передавать по одному каналу до 100 Гб; Узкая направленность лазерного луча, в космосе он не рассеивается, и перехватить его практически невозможно. Лазерные каналы находятся в той области электромагнитного спектра, которая не регламентируется, и специальных разрешений на её использование получать не придётся. Сейчас в институте заканчивают разработку конструкторской документации для изготовления аппаратуры. Все работы планируют завершить к 2024 году. После этого пройдёт эксперимент — один аппарат установят на «Прогрессе», второй — на МКС, и между отработают процедуру связи.
А лазерные каналы находятся в той области электромагнитного спектра, которая не регламентируется, специальных разрешений на ее использование получать не придется». Эксперимент с лазерной связью запланирован на 2024 год. Один аппарат будет стоять на «Прогрессе», а второй — на МКС, и между ними будет отрабатываться процедура связи. Обсерватория предназначена для астрофизических исследований в ультрафиолетовом и видимом диапазонах электромагнитного спектра с высоким угловым разрешением, а также для регистрации гамма-излучения в энергетическом диапазоне от 10 кэВ до 10 МэВ.
В рамках эксперимента NASA по оптической связи в глубоком космосе DSOC на телескоп Хейла в Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего Калифорния от спутника Psyche с расстояния почти 16 млн км — примерно в 40 раз дальше, чем Луна от Земли, — был передан лазерный луч ближнего инфракрасного диапазона с кодированными тестовыми данными. Это самая дальняя в истории демонстрация оптической связи. DSOC настроен на передачу тестовых данных с высокой пропускной способностью на Землю в ходе двухлетней демонстрации технологии во время полета Psyche к главному поясу астероидов между Марсом и Юпитером. Как DSOC впервые будет использован для тестирования высокоскоростной передачи данных за пределы лунной орбиты и как это может изменить исследование дальнего космоса. После этого можно будет продемонстрировать высокую пропускную способность передачи данных от приемопередатчика к Паломару на различных расстояниях от Земли.
Решаются следующие задачи: Дальномерная информация используется для высокоточного определения параметров орбит и координат наземных пунктов в общеземной геоцентрической системе координат, а также для контроля целевых характеристик и координатно-временного обеспечения ГНС ГЛОНАСС; угломерная информация используется для определения орбит космических объектов, в том числе при выведении высокоорбитальных КА на орбиту, а также для реализации однопунктовой схемы вместе с дальностью навигационно-баллистического обеспечения полетов; фотометрическая информация используется для оценки параметров ориентации КА; видовая информация детальные изображения используется для распознавания КА и оценки его развертывания. Таким образом, каждая лазерная станция выполняет не одну, а несколько задач в интересах российских космических программ.
«Роскосмос» проведет эксперимент по лазерной связи в 2023 году
Фото: gettyimages. Эта технология повысит скорость передачи данных в 10-100 раз по сравнению с текущими возможностями, потенциально прокладывая путь к новому стандарту связи в дальнем космосе. НАСА планирует важный шаг к достижению этой цели, запустив и протестировав свою первую двустороннюю сквозную лазерную систему связи.
Такой подход позволяет серии PTD быстро и недорого демонстрировать новые технологии подсистем для увеличения возможностей малых космических аппаратов. Помимо того, что TBIRD находится на стандартном коммерческом космическом корабле, он также был построен из существующих коммерческих телекоммуникационных аппаратных продуктов, которые были модифицированы для экстремальных условий космоса. Использование существующих компонентов повышает эффективность и обеспечивает экономию средств. В ходе миссии PTD-3 продемонстрирует очень стабильное наведение тела, что означает, что космический корабль может быть точно направлен на наземную станцию , чтобы облегчить демонстрацию TBIRD на нисходящей линии связи. Обтекаемая конструкция TBIRD не содержит никаких движущихся механизмов, поэтому способность космического корабля наводиться позволяет связывать телескоп лазерной связи из космоса с землей.
По словам ведущего специалиста по космической оптике Сергея Алексеева, работа над проектом началась два года назад.
Представители «ИКС Холдинга» отказались комментировать эту инициативу. Однако, как указано на портале hh. Вакансии включают в себя позиции руководителя, администратора проекта, архитектора ПО и системного инженера.
На принимающей стороне оптическая система фокусирует оптический сигнал на высокочувствительный фотодиод или лавинный фотодиод , который преобразует оптический пучок в электрический сигнал. При этом чем выше частота до 1,5 ГГц , тем больше объём передаваемой информации. Далее сигнал демодулируется и преобразуется в сигналы выходного интерфейса. Длина волны в большинстве реализованных систем варьируется в пределах 700—950 нм или 1550 нм, в зависимости от применяемого лазерного диода. Ключевой принцип АОЛС основан на компромиссе: чем большую продолжительность простоев вследствие неблагоприятных погодных условий туманов допускает заказчик, тем протяжённее будет канал связи.
Лазерный сигнал
- Росатом запланировал эксперимент с космической лазерной связью на 2024 год
- Разработка МФТИ
- Как осуществляется лазерная связь?
- Роскосмос. Проект «Сфера» переходит к практической реализации - Новости - Госкорпорация «Роскосмос»
- RU2233549C2 - ЛАЗЕРНАЯ ЛИНИЯ СВЯЗИ - Яндекс.Патенты
Плюсы и минусы лазерной связи
- Другие новости
- НАСА тестирует двустороннюю высокоскоростную лазерную систему космической связи
- Земля впервые получила лазерный сигнал с расстояния 16 миллионов километров -
- Космическая лазерная связь - это будущее подключения к Интернету
- Российская сеть лазерных станций
- Прием, Хьюстон, получите 4К-видео — на Луне появится система лазерной связи с Землей
Система «Сфера» получит лазерную связь
Удачный эксперимент Тестовые данные передавались одновременно через восходящий и нисходящий лазеры. Хотя это были не научные данные миссии Psyche, как планировалось, это все равно был большой успех. В течение короткого времени с помощью лазеров можно было передавать, принимать и декодировать только некоторые данные. Цель эксперимента DSOC — продемонстрировать, что скорость передачи «лазерных данных» в 10-100 раз выше, чем у современных радиочастотных систем, используемых сегодня на космических аппаратах. Как в радиосвязи, так и в лазерной связи ближнего инфракрасного диапазона для передачи данных используются электромагнитные волны, но в ближнем инфракрасном свете они заключены в значительно более узкие волны, что позволяет наземным станциям получать больше данных.
На более близких дистанциях скорость оптической связи ощутимо выше. Например, первый сеанс оптической связи с «Психеей» состоялся, когда она улетела от Земли на 31 млн км. Подобные скорости в оптике будут на один—два порядка выше, чем в радиочастотном диапазоне. Оптика на порядок увеличила бы его пропускную способность. Блок лазерного приёмопередатчика «Психеи» не предназначен для передачи научных данных с борта зонда на Землю.
SpaceX испытала на орбите два спутника Starlink, оснащенных такими межспутниковыми лазерными связями - об этом сообщили во время стрима по запуску очередной партии Starlink. Она добавила, что, как только SpaceX будет иметь межспутниковую лазерную связь, работающую последовательно по всей сети, "Starlink станет одним из самых быстрых вариантов передачи данных по всему миру.
Artemis II станет первым лунным полетом с экипажем, который продемонстрирует технологии лазерной связи, отправляя данные на Землю со скоростью нисходящей линии связи до 260 мегабит в секунду. Усилия НАСА в области лазерной связи распространяются и на дальний космос. В настоящее время НАСА работает над будущим терминалом, который сможет тестировать лазерную связь на экстремальных расстояниях и в сложных условиях наведения. Будь то лазерная связь в околоземных миссиях, на Луне или в дальнем космосе, внедрение оптических систем станет неотъемлемой частью будущих миссий НАСА. Более высокие скорости передачи данных с помощью лазерной связи позволят исследовательским и научным миссиям отправлять больше данных на Землю и узнавать больше о Вселенной. НАСА сможет использовать информацию из изображений, видео и экспериментов не только для исследования околоземного региона, но и для подготовки к будущим миссиям на Марс и за его пределы. При использовании материалов с сайта активная ссылка на него обязательна Последние аномальные новости.
Установлен мировой рекорд дальности передачи лазерного сигнала
В NASA пояснили, что новая система лазерной связи предназначена для передачи данных из глубокого космоса. «Роскосмос» планирует заняться лазерной связью на околоземной орбите. Лазерная связь двух объектов осуществляется только посредством соединения типа «точка-точка». Устройство связи ориентировалось на лазерный сигнал «маяка», отправленный с Земли. На прошедшей на этой неделе в Брюсселе конференции SITA IT SUMMIT была представлен проект системы связи в небе при помощи прорывной лазерной технологии. Кроме того, лазерная связь обеспечивает повышенную безопасность по сравнению с традиционными радиоволнами, поскольку ее сложнее перехватить и декодировать.