Новости применение искусственного интеллекта в медицине

Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ.

Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией

Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность? Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Динамика венчурного инвестирования в искусственный интеллект для медицины, по данным CB Insights.

«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине

Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика?

Полная роботизация: как искусственный интеллект помогает врачам

Произошло признание исследователями и разработчиками того факта, что системы ИИ в здравоохранении должны быть разработаны. Ученые утверждали, что программы должны быть рассчитаны на отсутствие идеальных сведений и должны опираться на опыт врачей. Новые подходы, связанные с теорией нечётких множеств , сетей Байеса и искусственных нейронных сетей , были созданы, чтобы отражать развитие потребности здравоохранения в интеллектуальных вычислительных системах. Однако с 2002 года технологии сделали большой шаг вперед, а к программам внедрения искусственного интеллекта в медицину подключились и IT-гиганты, и целые государства.

Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины.

Настройки телеэфира Перечень запрещенных в РФ организаций Все права на материалы, находящиеся на сайте m24. При любом использовании материалов сайта ссылка на m24.

Редакция не несет ответственности за информацию и мнения, высказанные в комментариях читателей и новостных материалах, составленных на основе сообщений читателей. СМИ сетевое издание «Городской информационный канал m24.

Фактически, внедрение таких аппаратов ежедневно демонстрирует преимущества использования искусственного интеллекта в сфере здравоохранения, позволяя сокращать влияние человеческого фактора на диагностику и лечение, и, соответственно, снижать количество врачебных ошибок. А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны. Что, конечно же, особенно актуально в последние два года, когда идёт борьба с коронавирусом. Это стало очевидно уже в 2020 году, и касалось не только напрямую сферы медицины, но и смежных областей. Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач.

Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий. Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2?

Алгоритмы машинного обучения позволяют проводить более точные и быстрые анализы медицинских данных, выявлять скрытые паттерны и предсказывать вероятность развития определенных заболеваний. Это позволяет раньше обнаруживать опасные состояния пациентов и принимать соответствующие меры для их лечения. Другая возможность искусственного интеллекта — разработка индивидуальных методов лечения. Благодаря анализу огромного количества данных, искусственный интеллект может предлагать персонализированные схемы лечения, учитывающие особенности каждого пациента. Это помогает избежать назначения неэффективных или слишком тяжелых лечебных процедур, а также минимизирует риск возникновения побочных эффектов. Искусственный интеллект также активно применяется в исследованиях медицинских препаратов и разработке новых лекарств. Алгоритмы машинного обучения позволяют быстро обрабатывать огромные объемы данных о биологических молекулах и идентифицировать потенциальные цели для разработки новых препаратов. Это способствует повышению эффективности и сокращению сроков исследований, что в свою очередь может привести к появлению новых методов лечения и терапии. Таким образом, искусственный интеллект имеет огромный потенциал в медицине. Персонализированная диагностика, индивидуальные методы лечения и ускоренные исследования — все это обещает значительное улучшение здоровья пациентов и прогресс в области медицины. Проблемы и вызовы использования искусственного интеллекта в медицине: этические аспекты и безопасность данных Внедрение искусственного интеллекта ИИ в медицину открывает новые возможности для диагностики, лечения и исследований. Однако, это также вызывает ряд проблем и вызовов, среди которых этические аспекты и безопасность данных играют важную роль. Во-первых, применение ИИ в медицине поднимает вопросы этики и конфиденциальности. Сбор и анализ большого объема данных о пациентах может привести к нарушению их конфиденциальности и частной жизни. Компании и организации, работающие с данными пациентов, должны обеспечивать высокий уровень защиты этих данных, чтобы предотвратить несанкционированный доступ и их злоупотребление. Во-вторых, существует риск зависимости от искусственного интеллекта и автоматизации процессов в медицине. Биологические и медицинские аспекты требуют внимательного и профессионального вмешательства врачей. Полное полагание на ИИ может привести к ослаблению роли врача и человеческого фактора в принятии решений, что сложно для понимания пациентами и вызывает опасения о безошибочности и безопасности процедур и лечения. Третьим важным аспектом является этическое использование ИИ в медицине. Возникают вопросы о прозрачности и объяснимости алгоритмов, использованных ИИ, чтобы врач мог понять и объяснить пациенту, какой именно алгоритм или модель привела к определенному диагнозу или рекомендации. Кроме того, ИИ должен использоваться только в тех случаях, где его применение будет полезным и эффективным для пациента, а не для коммерческих или иных целей. Искусственный интеллект в медицине стал важной и развивающейся областью. Однако, проблемы и вызовы, связанные с этикой и безопасностью данных, должны быть учтены и регулироваться соответствующими нормами и правилами, чтобы обеспечить эффективное и этичное использование ИИ в сфере здравоохранения. Искусственный интеллект в медицинских исследованиях: ускорение разработки новых лекарств и терапий Искусственный интеллект ИИ играет важную роль в современных медицинских исследованиях, позволяя ускорить разработку новых лекарств и терапий. Благодаря использованию ИИ, процесс разработки новых лекарств и терапий становится более эффективным и быстрым.

Искусственный интеллект в медицине — не конкурент, но помощник

В отличие от традиционного метода, вынимать эмбрионы из инкубатора не нужно. И, соответственно, это идет в помощь эмбриологу, чтобы лучшего качества эмбрион перенести", — пояснила заведующая эмбриологической лабораторией Алина Карпенко. Есть и обратные примеры. В ноябре Росздравнадзор впервые приостановил работу нейросети компании "Интеллоджик". Решение регулятора разработчики хотят опровергнуть. С 2023 года в России есть ГОСТ для проектирования и тестирования нейросетей, где алгоритмам прописали жизненный цикл, по итогу которого программы нужно проверять и обновлять.

Как раз по этим принципам в московском онкоцентре имени Блохина врачи обучают нейросети. К медикам обращаются клиники со всей страны. Чему мы должны обучить искусственный интеллект? Не просто визуализации каких-то образований, не просто увидеть что-либо. А увидеть то, что может повлиять на диагноз, на тактику ведения пациента", — заявила рентгенолог онкоцентра имени Н.

Блохина Марина Карпова.

Нейронные сети в помощь врачам Глубокие нейронные сети DNN могут помочь в интерпретации медицинских сканов патологий, электрокардиограмм, эндоскопии. Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта.

Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты.

Собянин Сергей Мэр Москвы Сергей Собянин рассказал, какую роль будут играть цифровые технологии в столичной медицине в ближайшем будущем. Цифровые технологии в московской медицине спасают жизни и повышают качество лечения пациентов. Искусственный интеллект ИИ помогает врачам ставить верный диагноз и назначать нужные исследования. Основную работу ИИ сейчас выполняет в службе лучевой диагностики.

ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.

Технология мРНК

  • Минимизация ошибок
  • Разработка и синтез лекарственных препаратов
  • Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
  • Искусственный интеллект в медицине | Обрфм
  • Эксперт объяснил провал искусственного интеллекта в медицине
  • Собянин: ИИ превратится в базовую медицинскую технологию в Москве // Новости НТВ

Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни

Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Преимущества применения нейросетей в медицине очевидны – возможность обрабатывать большие массивы данных в короткие сроки, а также точность диагностики. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую. Сценарии применения искусственного интеллекта в медицине. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения.

AI-платформа для анализа медицинских изображений

По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. В 2023 году искусственный интеллект произвел фурор в качестве полезной технологии во многих отраслях, особенно в медицине.

Искусственный интеллект в медицине. Настоящее и будущее

Какие возможности и проблемы есть у нейронных сетей в медицине сегодня? Нейронные сети в помощь врачам Глубокие нейронные сети DNN могут помочь в интерпретации медицинских сканов патологий, электрокардиограмм, эндоскопии. Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии.

Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний.

Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше.

Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью.

Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Нейросеть научилась отличать родинки от некоторых видов рака кожи Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature. На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой.

При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому самый распространенный и злокачественный вид опухоли на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов. Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр за которым обычно следует дерматоскопия или биопсия. Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок. Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному.

Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма которая отражает способность корректно определить доброкачественную и злокачественную опухоль не уступает чувствительности и специфичности дерматологов. В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок.

Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет. Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев. Применение ИИ в медицине Данные о пациентах Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза.

Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.

Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы.

Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов.

Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие.

Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей. Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие. ИИ — сам по себе потенциальное оружие, которое нуждается в жестком контроле. Что же касается усилий по созданию с его помощью новых средств спасения жизней, то это можно только приветствовать». Еще два препарата, созданных Insilico Medicine при участии ИИ, сейчас проходят клинические испытания: лекарство от COVID-19 на первой фазе и препарат против онкологических заболеваний, который должен будет помочь в лечении твердых опухолей.

На сегодняшний день тысячи профессионалов медицины более чем из 80 стран и 500 медицинских институтов вовлечены в создание проекта. Human Diagnosis project направлен на создание наиболее полной базы, способной составить алгоритм помощи любому пациенту. Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных. Главной задачей этого проекта является создание системы умственного ассистента для лучевых диагностов и кардиологов, которая бы действовала как фильтр и быстро обнаруживала аномалии, используя общий анализ изображений, текста и клинических данных. Израильская компания MedyMatch разрабатывает ИИ, способный оценивать компьютерные томограммы и находить любые отклонения от нормы. MaxQ будет применяться в первую очередь для ранней диагностики травм черепа, инсульта и определения его вида геморрагический или ишемический в машинах неотложной помощи, что позволит медицинскому персоналу быстрее начать лечение. ИИ для пациентов Использование ИИ не ограничивается его применением медицинскими сотрудниками - также нейронные сети могут оказывать помощь пациентам. Существует «приложение-медсестра» - Sense. На экране телефона пациента появляется анимированная медсестра, которая задает вопросы о самочувствии, узнает нет ли жалоб. Приложение может сразу отправить результаты опроса врачу, напомнить о приеме лекарств, помочь в случае необходимости связаться с доктором по видеосвязи. Для людей, страдающих сердечно-сосудистыми заболеваниями разработана программа AliveCor, способная делать запись ЭКГ в любом месте с помощью смартфона и специальных детекторов, а после сообщать об отклонениях. В первую очередь, ИИ направлен на выявление аритмий. Еще одним полезным мобильным приложением является Babylon Health, позволяющим из любой точки Земли и в любое время получить онлайн-консультацию врача со стажем не менее 10 лет. А чат-бот поможет предварительно по симптомам, которые ему опишет пациент, поставить диагноз, а также даст краткую справку об этом заболевании. ИИ для распознавания заболеваний по фотографиям Создаются программы, которые с помощью анализа фотографии и сопоставления их с загруженной базой данных, смогут обнаружить наличие патологии.

Комплексный анализ работы сервисов ИИ в медицине провели в Москве

Технологии искусственного интеллекта для системы здравоохранения. Одним из важных направлений применения искусственного интеллекта в медицине является его использование в диагностике различных заболеваний. Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования.

Как AI может повлиять на CRISPR?

  • Обзор Российских систем искусственного интеллекта для здравоохранения
  • Искусственный интеллект в сфере здравоохранения — Википедия
  • Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
  • Что такое CRISPR?

Похожие новости:

Оцените статью
Добавить комментарий