Новости профессии связанные с нейросетями

Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать.

Работа и вакансии "специалист по нейросетям" в Санкт-Петербурге

Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Специалист по нейронным сетям создает саму модель, помогает ей обучаться и следит за ее работой.

Профессии будущего. Как нейросети открывают новые направления в edtech

В прошлый раз, неделю назад, мы обсуждали ChatGPT, нейросети, технические аспекты, нюансы этих механизмов. Современные профессии, которые они могут привести в этот мир, это: молекулярный биолог, нейробиолог, врач-невролог и нейрохирург, инженер (разрабатывающий искусственные нейронные сети), специалист по BigData, лингвист. Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. Но Universal потребовал от музыкальных агрегаторов запретить нейросетям учиться на их плейлистах. Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди.

ИИ ищет работу: топ-10 профессий, которые исчезнут или изменятся из-за нейросетей

Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями. Специалист, который создает оригинальные искусственные аналоги природным материалам, чтобы в дальнейшем использовать их в медицине, архитектуре, электронике и других областях. Впрочем, нынешние представители профессии отмечают, что отнюдь не все созданные на бумаге прототипы могут работать в реальности. Но пока оценить перспективы специалистов по нейроэтике сложно. Эксперт полагает, что именно "медиаполицейские" появятся вряд ли - скорее, их обязанности перераспределят между другими профессионалами в органах правопорядка.

Герой компьютерной игры, звезда рэпа? Вообще-то лазурный автобус! А этот задорный рыжий юнец — не кто иной, как трамвай «Чижик». Так по мнению нейросети выглядел бы очеловеченный общественный транспорт Петербурга. Мечтаете, чтобы вас изобразил великий художник Пикассо или Малевич? Проще простого — Русский музей запустил собственную нейросеть, которая генерирует портреты в стиле работ Брюллова, Серова, Врубеля и других гениев живописи.

Читайте также: Нетехнические профессии, связанные с нейросетями: искусственный интеллект за пределами программирования Нейрокопирайтер Копирайтер, который использует нейросети для написания текстов. Это увеличивает производительность труда и меняет направление деятельности: человек не пишет текст сам, а только проверяет и корректирует его. Взаимодействие копирайтера с искусственным интеллектом можно описать как ввод запросов и доработка ответов. Что нужно знать и уметь Обычно требуется высшее филологическое или журналистское образование, опыт в написании текстов, редактуре и проверке информации. От соискателя зачастую требуется скрупулезность, усидчивость, способность обрабатывать большой объем данных, умение правильно формулировать техническое задание для языковой нейросети. Сколько зарабатывает нейрокопирайтер Заработок зависит от объема выполненных работ. Как правило, такие специалисты работают как фрилансеры сразу с несколькими заказчиками. При устройстве на работу в компанию нейрокопирайтер может получать от 40 до 80 тыс. Как устроиться на такую работу Предоставьте резюме, выполните тестовое задание работодателя и заключите договор сотрудничества. Маркетолог-аналитик Это специализация маркетолога, предполагающая анализ данных рынка, подготовку отчетов, изучение продуктов компании и выдвижение гипотез по их улучшению, помощь в ценообразовании и т. В этом случае нейросети для маркетологов становятся одним из основных инструментов работы: они помогают структурировать и анализировать большие объемы данных. Что нужно знать и уметь От соискателей требуется высшее образование в области маркетинга, математики, экономики или статистики. Специалист должен уметь обрабатывать большой объем данных, собирать маркетинговую информацию, составлять отчеты. Сколько зарабатывает маркетолог-аналитик Зарплата в среднем составляет около 100 тыс. Как устроиться на работу Чтобы устроиться AI-маркетологом, нужно откликнуться на вакансию и пройти собеседование. Часто требуется выполнить тестовое задание. ИИ помогает лучше и быстрее анализировать аудиторию и определять ее потребности, при этом он способен обрабатывать гораздо больший объем данных, чем человек. Благодаря этому AI с дизайнером в паре способны создавать персонализированные интерфейсы. Также может потребоваться опыт работы с большими данными для анализа ЦА. Сколько зарабатывает дизайнер интерфейсов В зависимости от опыта работы от 30 до 200 тыс. Как устроиться на работу Обычно работодатель требует предоставить портфолио и пройти собеседование. Промт-дизайнер Промт-дизайнер prompt designer — специалист, который формулирует текстовые запросы к генеративным нейросетям, чтобы получить изображение в соответствии с техническим заданием. Что нужно знать и уметь Это творческая профессия, которая предполагает глубокие знания языка, на котором формулируются запросы. Специалист должен уметь анализировать семантические и синтаксические конструкции и хорошо разбираться в принципах работы ИИ. Сколько зарабатывает промт-дизайнер Такой специалист может работать по трудовому договору или на фрилансе с оплатой за трудочасы или фактические результаты. Зарплата оценивается в зависимости от опыта. Как устроиться на работу Работодатели требуют предоставить портфолио и документы о высшем образовании, а также рассказать на собеседовании о владении профессиональными инструментами генеративные нейросети, графические редакторы. ИИ-креатор ИИ-креатор создает изображения, тексты, видео с помощью нейросетей. Благодаря тому, что человек непосредственно не занят в генерации контента, он может тратить больше времени на творческую сторону проекта и объединять в себе сразу несколько функций. Что нужно знать и уметь Потребуется опыт в создании контента для блогов, умение строить контент-план. Плюсом будет образование в области маркетинга. Умение составлять запросы для различных генеративных нейросетей. Сколько зарабатывает ИИ-креатор Заработная плата варьируется от 40 до 90 тыс. Как устроиться на работу ИИ-креатор может работать на фрилансе или в офисе. В первом случае для заключения договора на оказание услуг может понадобиться выполнить тестовое задание и предоставить портфолио. Во втором случае к перечисленным ранее пунктам добавится прохождение собеседования. Компьютерный лингвист Компьютерный лингвист — специалист, который занимается обработкой данных и переводом их в естественные для нейросетей языки. В дальнейшем профессионалы этого профиля передают результаты своей работы дата-сайентистам, которые обучают алгоритмы работать с текстами переводы, распознавание речи, трансформация устного языка в письменный и т. Если вы задаетесь вопросом, может ли филолог стать компьютерным лингвистом, то ответ будет утвердительным. Но ему понадобятся хорошая база программирования и понимание работы моделей машинного обучения. Что нужно знать и уметь От специалиста требуется знание естественных и компьютерных языков. При этом приветствуется не только владение русским и английским, но и другими языками. Важно уметь программировать на Python хотя бы на базовом уровне , знать основы обработки естественного языка NLP и обладать опытом в разметке данных. Где учиться компьютерному лингвисту? Для этой профессии подходит образование по профилю «Фундаментальная и прикладная лингвистика», магистратура «Компьютерная цифровая лингвистика», курсы переподготовки в вузах. Сколько зарабатывает компьютерный лингвист Средняя зарплата составляет 100—120 тыс. Как устроиться на работу Работодатели требуют релевантного опыта в других компаниях и профильного образования с глубоким знанием естественных языков. Обычно для устройства на работу нужно выполнить тестовое задание и пройти собеседование.

Избранное Как развитие ИИ изменило подход к работе Люди использовали различные формы искусственного интеллекта десятилетиями. Так, первая программа Eliza, которая пародировала разговор с психотерапевтом, была создана ещё в 1966 году. Но настоящий бум машинного разума случился уже в наше время. Именно он способен создавать тексты, изображения и аудио при помощи подсказок пользователя. Чаще ИИ применяют миллениалы, но осваивают их и представители других поколений. Причём, по некоторым оценкам, поколению X, рождённому в 1965—1980 годах, удаётся адаптироваться к новой эпохе даже лучше, чем зумерам. Причина может быть в том, что старшие сотрудники более терпимы к несовершенству технологий. В то время как молодые специалисты ожидают от программ лёгкой и бесперебойной работы. Как бы то ни было, использовать машинный разум, вероятно, предстоит всем — в ближайшие годы рынок нейросетей будет только расти. Нейросеть пригодится, чтобы проанализировать отзывы покупателей и понять, как клиенты оценивают товар или услугу. Много возможностей генеративный ИИ открывает в сфере персонализированной рекламы. Он может готовить предложения под конкретного пользователя, учитывая его интересы, предпочтения и поведение. Например, показывать рекламные баннеры на конкретные товары с учётом предыдущих покупок клиента.

Нейросеть составила список самых востребованных профессий будущего

И ты можешь стать его частью. В переводе «крауд» — это толпа. Редакция Алисы, в которую встроена команда Саши, учит нейросеть говорить. AI-тренеры готовят для нее примеры ответов, безупречных с точки зрения этики, языка, пользы, достоверности и безопасности. Нужно быстро разбираться в незнакомых темах — от алгебры до поэзии, критически мыслить и отличать достоверные источники информации от «мусорных». Попасть на работу сложно, нужно пройти серьезное тестовое задание и собеседования. Ценные навыки, которые пригодятся репетитору машин — очень быстро разбираться в незнакомых темах и отличать достоверные источники информации от фейковых Источник: Дарья Пона — Сначала ты откликаешься на вакансию, работодатель смотрит твое резюме, — рассказывает Саша.

Это пять автотестов: по русскому языку, этике, безопасности, фактчекингу и ранжированию. Базовые принципы выполнения работ объясняются в инструкции, есть пара референсов, которые помогают понять логику решения. Если ты прошел автотест, тебя просят написать три текста на разные темы. Обязательно есть «умный вопрос», где надо разобраться в наукоемком материале. Когда я получила задание, мне пришлось перечитать его раза три. Из всех слов, которые я там увидела, были понятны только предлоги.

Я пошла искать информацию, читать, слушать лекции. Вроде бы получилось понятно. Следующий вопрос — чувствительный. К ним относится медицина, религия, национальный вопрос, деньги, психологические проблемы, вопросы манипуляции, например, как заставить парня сделать тебе предложение. Тут очень важно ответить этично и безопасно. Именно этому учат Алису.

Я сказала спасибо моему «бэку», потому что мне досталась медицинская тема, в которой я «варилась» полжизни. И финальная задача — продающий текст, где нужно досконально разобраться в товаре, его технических характеристиках, ничего не перепутать. Задания у всех соискателей разные. В итоге я прошла эти круги испытаний. Следующий шаг — собеседование в онлайне. Из всех слов, которые я там увидела, были понятны только предлоги» Работать можно из любой точки страны.

Кто где. В расписании Саши — много летучек с командами. Есть собеседования, поскольку команда еще набирается. Все события отражаются в календаре.

Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы. Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление. Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями. Специалист, который создает оригинальные искусственные аналоги природным материалам, чтобы в дальнейшем использовать их в медицине, архитектуре, электронике и других областях. Впрочем, нынешние представители профессии отмечают, что отнюдь не все созданные на бумаге прототипы могут работать в реальности.

Насколько реальна опасность На самом деле, утверждения, что роботы или нейросети оставят без работы представителей той или иной профессии, звучит чаще всего в заголовках новостей и журналистских статьях. Даже в названиях своих исследований ученые используют более мягкие формулировки: Насколько профессии восприимчивы к автоматизации? Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи. Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать. В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации.

Финансовые профессии В финансовой сфере нейросети могут быть использованы для прогнозирования цен на акции, анализа финансовых отчетов компаний и рискового управления. Нейросети могут анализировать большие объемы данных, чтобы предсказывать будущие изменения цен на акции и определять наиболее перспективные инвестиционные возможности. Маркетинговые профессии В маркетинге нейросети могут быть использованы для анализа данных и определения наилучших стратегий маркетинга. Они могут использоваться для анализа поведения потребителей, чтобы определить, какие продукты и услуги наиболее популярны, и предсказать, какие маркетинговые кампании будут наиболее эффективными. Профессии в области права и безопасности В профессиях, связанных с правом и безопасностью, нейросети могут быть использованы для анализа больших объемов данных, чтобы выявлять законопреступления и определять наиболее эффективные стратегии противодействия. Они также могут быть использованы для обнаружения мошенничества и кибератак.

Аналитики выяснили, какие профессии могут быть заменены нейросетями

С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных. Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию. Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей. Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma.

Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью. Трудно сказать, почему это так популярно. Но факт остается фактом: в этой области все еще много стартапов, которые легко привлекают инвестиции. Моя аватарка после обработки нейросетью Вклад разработчиков в развитие нейросетей Время от времени кто-то из разработчиков предлагает классные идеи и сам же воплощает их в жизнь — в рамках коммерческого проекта или просто в виде домашнего задания. В 2016 году люди, работающие с текстами, стали пользоваться моделью, которую популяризовал Андрей Карпатый — сейчас очень известный специалист. Он написал один из популярных постов про рекуррентные нейронные сети. Все кинулись искать полезное применение этой технологии. Модель была маленькая, она не позволяла решать много задач, но люди вдохновились. Вклад Карпатого в генерацию текстов огромный.

Он популяризовал неизвестную технологию, привлек широкий круг разработчиков. Те стали генерировать идеи, проверять гипотезы и заметно продвинули отрасль вперед. Видео Карпатого про языковое моделирование Опенсорс дает большой вклад в развитие ML. Популярнейший фреймворк машинного обучения PyTorch для языка Python — полностью опенсорсный продукт. Известная библиотека для машинного обучения TensorFlow — изначально внутренняя библиотека Google, которую компания со временем перевела в опенсорс, и с тех пор ее развивает комьюнити. Среди контрибьюторов все еще много людей из Google, но влияние комьюнити велико. Такими опенсорсными проектами пользуются абсолютно все, кто занимается обучением нейросетей и применяет их в своих проектах. Если разработчик делает коммиты в PyTorch, это классная строчка в его резюме — он сделал полезный вклад для всего сообщества. Поэтому разработчики заинтересованы в том, чтобы контрибьютить в громкие опенсорсные проекты. Важный вклад делают журналисты и блогеры в мире науки, которые занимаются пересказом статей, рассказывают аудитории, какова была изначальная идея, как она менялась.

Как правило, это классные специалисты с личным брендом, им можно доверять. В ML ярко проявляется тенденция, что с помощью личного бренда можно находить хорошую работу, получать гранты и участвовать в интересных проектах. Кроме Андрея Карпатого, стоит упомянуть научного сотрудника Google Себастиана Рудера, Константина Воронцова с опенсорс-курсом по ML, преподавателей Школы Академии Данных, которые создали свой онлайн-учебник по машинному обучению, Валеру Бабушкина и других ребят, которые ведут научно-популярные Telegram-каналы и рассказывают про интересное в области ML. Что в итоге Нейросети отлично умеют находить и генерировать тексты, картинки и музыку. Но на этом их возможности не заканчиваются. Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, а можно использовать их в качестве инструмента для исследований в научных лабораториях. В первое легче попасть, а для второго порог входа выше. Вакансий тоже больше в коммерческой разработке.

Контролируем искусственный интеллект — 6 часов Тема 2.

Работа с изображениями в Kandinsky. Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4. Stable Diffusion для новичков. Эффектная работа с графикой без требовательного ПО — 9 часов Live-консультация по итогам модуля Нейросети как инструмент для генерации успешной карьеры — 10 часов Тема 1. Создание портфолио и подготовка к собеседованию при помощи нейросетей — 3 часа Тема 2. Использование нейросетей для повышения эффективности HR-экспертов — 3 часа Live-консультация по итогам модуля Нейросети для работы с видео и аудио — 44 часа Тема 1. Возможности генерации видео в Stable Diffusion — 8 часов Тема 3.

Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать. Если есть десятки CSV, которые ссылаются друг на друга, нужно правильно соединить их между собой по ключам и в процессе ничего не потерять и не приобрести. Это сложная задача для людей, которые хотят создавать искусственный интеллект. Чтобы стать разработчиком нейросетей, должен быть искренний, неиссякаемый интерес к этому. Желательно иметь в голове образ результата, абстрактное желание заниматься нейросетями ни к чему не приведет. Сильная образовательная база не так важна, как любознательность и усидчивость. Однако, если в вузе вы хорошо изучили математику и алгоритмы, ваш инструментарий будет богаче. Многие задачи, которые встречаются в моей работе сейчас, я научился решать еще в университете. Помимо математических знаний и опыта разработки, здорово обладать профильной экспертизой — это помогает быстрее находить очевидные глупости и лучше понимать ценность решения. Нейросеть — это лишь инструмент, которым можно овладеть за короткий срок, а профильный опыт накапливается довольно долго. Выбирайте сферу, в которой у вас есть такой опыт. Например, если умеете работать с микроконтроллерами, портировать какие-то штуки на железки, то идите специалистом по нейросетям в промышленность. А если хорошо знаете банковскую сферу, ее риски и ограничения, то в банк. Определитесь, к какому результату стремитесь именно вы. Можно копать в сторону определенного класса задач и пройти специализированные курсы: По компьютерному зрению — например, Стэнфордский курс CS231n: Convolutional Neural Networks for Visual Recognition По обработке текстов на естественном языке NLP По графовым нейронным сетям. Эти курсы дадут хорошее представление о том, как все работает и что можно делать с помощью нейросетей. А параллельно с обучением стоит искать работу: лучше всего учится и запоминается то, что совпадает с рабочими обязанностями. Я точно не знаю, как сейчас выглядит рынок ML-вакансий в России. Но те, что есть, в основном не для джуниоров. Все ищут сеньоров, и это очень плохо — отсутствует преемственность поколений. Будущий хороший специалист должен приходить в компанию джуном и учиться там у сеньоров и мидлов. Через некоторое время он матереет, легко справляется с типовыми задачами, становится способен исследовать что-то новое и продвигать индустрию. Если компания нанимает только сеньоров, она не растит джунов и не поставляет на рынок новых специалистов. На мировой рынок, безусловно, сейчас влияет кризис в бигтехе Big Tech. Стартапы стали получать значительно меньше инвестиций и перестали нанимать стажеров. Мы вынуждены указывать это по требованию российских властей , Google, Microsoft привели к уменьшению вакансий, и это беда. Кризис в основном бьет по джунам и мидлам, которые хотели вкатиться в эту область. Кажется, Яндекс все еще приглашает на стажировки. Это хорошо, потому что прийти стажером в крупную технологическую компанию — большая удача. На стажировку берут вчерашних выпускников и собеседуют их не так, как опытных разработчиков: смотрят, хороши ли они в математике — в области, релевантной задачам компании. Мидлов на собеседованиях спрашивают про опыт работы, а по математике не гоняют. Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему. Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя.

Поэтому многие трудоустроенные в настоящий момент граждане рискуют очень скоро остаться без работы и вообще каких-либо перспектив на будущее. Но не все профессии оказались под угрозой исчезновения. Самая известная нейросеть ChatGPT составила рейтинг специальностей, которые, по ее мнению, будут наиболее востребованы в будущем. На первом месте топа — инженер-программист самого искусственного интеллекта.

Специалист по нейросетям

Профессии, связанные с нейросетями, технологиями Big Data и VR/AR, визуальным скриптингом, киберспортом и машинным обучением будут востребованы в России в ближайшие пять лет. Представляем 5 уникальных профессий будущего, связанных с обработкой данных и искусственным интеллектом. — Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее. Создатель сайта Кремля предрек исчезновение ряда профессий из-за нейросетей. – Безусловно, нейросеть будет помогать и упрощать рабочие процессы, – рассказывает руководитель направления информационной безопасности Центра цифровой экспертизы Роскачества Сергей Кузьменко.

Незаменимых нет: вытеснят ли нейросети творческие профессии?

Это связано с тем, что нейросеть хоть и обладает интеллектом, но все же является программой, а потому нуждается в четких командах. Нейронная сеть может найти решение проблемы, но ей необходимо изучить структурированный набор данных. ОБУЧЕНИЕ МАРКЕТИНГУ ?utm_source=yt_m&utm_campaign=top6neiroprofВ 2024 году с помощью нейросетей можно не только подрабатывать, но и. Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать. Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT.

Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей

Нейросети уже помогают тысячам людей самых разных профессий и даже буквально «работают за них» — создают изображения и логотипы, анализируют данные, пишут код и тексты. Источник: Reuters Однако высока вероятность того, что в ближайшей перспективе человеку придется столкнуться с очевидными последствиями прогресса. Различные модели ИИ будут работать все эффективнее, а обходиться все дешевле, поэтому работодатели начнут предпочитать системы искусственного интеллекта живым работникам. Редакция RTVI решила узнать мнение о новом витке конкуренции на рынке труда непосредственно у источника проблемы — самого искусственного интеллекта. Как модель искусственного интеллекта, я не могу иметь мнений или убеждений ни по какому вопросу. Мой ответ основан на анализе данных и исследованиях по этой теме, а также на опыте стран и отраслей, в которых уже произошли процессы автоматизации. Можно предположить, что одной из самых больших угроз, которые представляет искусственный интеллект для человечества, это автоматизация труда и безработица.

Искусственный интеллект может автоматизировать многие задачи и работы, ранее выполнявшиеся людьми. Это может привести к повышению эффективности и производительности, но также вызовет и серьезную озабоченность по поводу безработицы и экономического неравенства. Стремительное развитие технологий ИИ и автоматизации вероятно приведет к заметной потере рабочих мест в различных отраслях, особенно в тех, где возникает много повторяющихся задач, а работникам достаточно низких профессиональных навыков. К работам с наибольшим риском автоматизации относятся те, которые связаны с повторяющимися задачами, такими как работа на конвейере, ввод данных и телемаркетинг. Однако ИИ также способен автоматизировать и более сложные задачи, такие как обслуживание клиентов, бухгалтерский учет и даже такие профессии как врачи, юристы и архитекторы. Это может привести к снижению спроса на людей, а в некоторых случаях и к полной автоматизации определенных профессий.

Всего год назад американские ученые создали маленького робота-краба толщиной в 0,5 мм — с его функциями можно избавлять пациентов от закупорки артерий и опухолей. Кроме того, компьютеры научились назначать дозировки лекарств более точно, чем это делают сейчас доктора. Нейросети применяются даже на заводах. С их помощью производители осуществляют контроль качества, проводят диагностику оборудования, проектируют новую продукцию и т. Особую нишу заняли промышленные роботы, которые могут полноценно заменить сварщиков, шлифовщиков, сборщиков и других специалистов. Что будет дальше Аналитики считают, что в ближайшем будущем нейросети продолжат «завоевывать» профессиональное и повседневное пространство людей. Отсюда в обществе возникла дискуссия: заменят ли технологии человеческий ресурс.

По словам эксперта, страх общества, что компьютеры сместят людей с тех или иных работ, вполне оправдан. Активное развитие нейросетей приводит к тому, что многие специальности становятся неактуальными. Если ваша работа — получить список из 10 документов, взять из них какие-то данные и собрать их в 11-й документ, то, скорее всего, вас алгоритм заменит. Также опасность идет для тех, кто занимается сбором и анализом информации. Нейросеть это прекрасно делает, что показывают последние разработки. Например, такие как ChatGPT. И работа рерайтера, который берет 2-3 новости, материалы какие-то или вставляет новые для написания текста, тоже в ближайшее время, вероятно, будет заменена нейросетями», — рассуждает собеседник.

Есть и другие профессии, где участие человека не потребуется, и в этом нет никакого «всемирного заговора», отметил Чечулин. Речь идет о бизнесе, которому выгоднее задействовать компьютеры: они не спят, не едят, не отвлекаются, а только выполняют поставленную задачу.

В результате приходится писать большое количество неинтересных текстов на неинтересные темы за низкий прайс клиентам, которые еще и всю душу вынут. Чтобы не выгорать, нужно работать по дорогому прайсу на клиентов, которые готовы платить, в тематике, которая вам интересна. А для этого нужно хорошо понимать бизнес клиента. Тогда, мне кажется, никакого выгорания не будет.

Можно ли SMM-специалисту работать за рубежом Тут вопрос в том, насколько хорошо вы понимаете язык. Чтобы делать хороший контент, нужно думать на этом языке так же, как его носители. Это же не просто разговор, это фразы, местные шутки и инфоповоды, которые актуальны у аудитории. У нас получилось хорошо зайти в Саудовскую Аравию, исключительно на контенте на английском языке. SMM в целом тяжело вывести за рубеж, потому что есть такое понятие как «проклятие языка». Тяжело продать услуги, которые связаны с коммуникацией, на международном рынке.

Так же и в продажах, ваш основной инструмент — это язык. Будет тяжело продать свои услуги. Есть ли зависимость между возрастом специалиста и его зарплатой В нашем совместном исследовании с аналитическим сервисом DataFan было выявлено, что молодые middle-специалисты в SMM получают меньше, чем их старшие коллеги. Есть ли догадки, с чем это может быть связано? Это странно, потому что зарплата зависит от грейда специалиста. У меня есть предположение, что молодые специалисты чаще работают не в больших компаниях, а в стартапах, где по определению платят меньше.

В большой компании до middle-специалиста дорастают в среднем в 27 лет. Формально должность одна и та же, но зарплаты будут разные. Какой путь выбрать: стать специалистом широкого или узкого профиля Если выбирать между широкопрофильным специалистом и узкоспециализированным, больше ценятся и выше оплачиваются нишевые специалисты. Главное — выбрать ту нишу, в которой интересно работать. В то же время, если вы хотите работать в маленькой компании, там больше требуются широкопрофильные спецы. Во всем есть свои плюсы и минусы: в большой компании большие задачи и большие бюджеты, но сложнее расти; в маленькой компании быстрый рост, но маленькие бюджеты, и все нужно делать своими руками.

Читайте также: « Как перестать работать за 20 000 рублей и начать зарабатывать в SMM в 4 раза больше ». Время сейчас тоже тихое — компании стараются меньше светиться публично.

Виталий Микрюков, директор по маркетингу глобальной команды ИКРЫ уже несколько месяцев использует инструменты ИИ для решения задач, связанных с маркетингом, стратегией и продажами. Он уверен, что настоящее и особенно будущее полно ИИ-контента, который будет становиться только лучше.

Контента будет много, но потреблять его продолжим мы с вами. А теплые человеческие коммуникации станут настолько востребованными, что появится контент-лейбл «создано людьми для людей». Кроме того, нейросети помогают быстро визуализировать идеи, экономя время и деньги. Например, в Midjourney получится быстро рисовать визуалы для презентаций, не прибегая к услугам иллюстратора.

Или создавать изображения продукции на этапе пресейла. Обычно эту рутинную и не очень творческую работу выполняют дизайнеры, а результаты их труда часто просто остаются на бумаге. В условиях, когда для механической работы возникают более эффективные инструменты, чем человеческий мозг, людям становится выгоднее развивать мягкие навыки.

Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!

Здесь вы узнаете про профессию специалиста по нейросетям, как пройти курсы, и сколько они зарабатывают! Профессия «Специалист по нейросетям» предполагает глубокие знания и специализацию в различных областях, связанных с нейросетями. Инженер нейросетей – это перспективная профессия, представители которой востребованы в разных отраслях. Реже специалистов по нейросетям ищут в госсекторе, строительстве, логистике, здравоохранении и тяжелом машиностроении – по 1% вакансий. — Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее.

ТОП-5 профессий в сфере ИИ, которые изменят мир

Legion-Media — То есть каждая нейронная сеть написана под очень конкретные задачи? Нет таких алгоритмов, которые могли бы свободно переключаться между разными сферами и тематиками? Но по эффективности им далеко даже до уровня пятилетнего ребёнка. При этом Билл Гейтс выступил против таких призывов: он заявил, что мораторий не решит проблем. О каких угрозах и проблемах говорят специалисты? Есть так называемые состязательные атаки, когда злоумышленники могут использовать уязвимость архитектуры нейросетей для того, чтобы подменить распознаваемое изображение. Для человека отличия будут незаметны, но нейросеть начнёт очень сильно ошибаться, получив такую изменённую картинку. Проводились даже специальные опыты, когда нейросеть, отвечающая за работу автомобильного автопилота, переставала распознавать пешеходов в качестве препятствия. Также по теме «Нужен аудит систем ИИ»: IT-специалист — о проблемах и выгодах внедрения технологий искусственного интеллекта Технологии искусственного интеллекта могут стать инструментом контроля за людьми, если для этой сферы не будут созданы правовые рамки....

Есть и другие риски. Например, если разработчик поленится вычистить данные, на которых он обучал чат-бот, то нейросеть может выдать их злоумышленникам, если они применят специальный запрос. А среди этих данных могут быть и персональные. Пока что такие взломы не носят массового характера, но компьютерные вирусы в своё время тоже поначалу были только достоянием лабораторий. А что касается открытого письма с призывом ввести мораторий на разработку нейросетей, то тут вряд ли речь идёт о реальных опасениях за будущее человечества — скорее оно связано с корпоративными интересами. Сейчас идёт напряжённая гонка между IT-гигантами в сфере создания нейросетей. Тот же ChatGPT уже не раз ловили на том, что он выдаёт фейки, сочиняет их сам, а не берёт из каких-то источников. Дело в том, что ChatGPT — это генератор текстов, работа которого основана на сложной математике.

И поскольку эти вычисления очень сложные и очень приблизительные, то на выходе порой получаются сбои. И вообще, нейросети создаются для помощи людям, а не для того, чтобы их заменить. Это невозможно, особенно в таких областях, как медицина, например. Последнее слово всё равно остаётся за врачом, какие бы нейросети ни применялись для постановки диагноза. В своё время IBM пыталась продвинуть на американском рынке продукт Watson Health — планировалось, что ИИ найдёт применение в здравоохранении. Однако продукт так и не завоевал доверие врачей: нейросеть часто ошибалась, а в тех случаях, когда ставила точные диагнозы, давала очень узкие рекомендации по лечению. Потому что выборка данных, на которой учат нейросети, — она всё-таки очень ограниченная.

Сфера сельского хозяйства. Несмотря на некоторое отставание в развитии, эта отрасль становится все более технологичной. В ней уже сегодня активно используются нейросети. С помощью дронов фермеры могут осматривать свои угодья, а специальные программы помогают им анализировать состояние посевов, выделяя «больные» участки. Искусственный интеллект применяется для расчета прогнозов, составления планов, сортировки урожая и т. Конечно, это далеко не все направления, где активно используется нейросеть. Но искусственный интеллект все глубже проникает в нашу жизнь. Осваивать эту профессию — значит, смотреть в будущее и строить новый мир. Читайте также: Что такое краудфандинговая платформа? Если говорить о трудовых обязанностях специалиста по нейронным сетям, то они сводятся к разработке и созданию нейросети, проведению машинного обучения модели, проверке ее работы, исправлению ошибок и т. Таким мастерам, также как и дата-саентистам, необходимо уметь обращаться с большими массивами данных, обрабатывать их, находить связи и правила. Что должен уметь такой специалист Если говорить начистоту, то специалист по нейросетям — это совсем не та история, когда пришел с улицы и начал работать. А потом по ходу дела обучился и набрался опыта. Чтобы освоить эту непростую профессию, конечно, необязательно заканчивать ВУЗ по профильной специальности, но необходимо иметь техническое образование с математическим уклоном. Азы можно освоить, пройдя или онлайн-курсы в хорошем университете, или офлайн на базе специализированного образовательного учреждения. Чаще всего в данную сферу уходят дата-саентисты или другие программисты, которые видят себя именно в этой отрасли. А теперь посмотрим, какими знаниями и навыками нужно обладать, чтобы стать хорошим специалистом по нейронным сетям: хорошо знать математику, статистику, основы и методы работы в IT сфере; уметь визуализировать полученную информацию, создавать инфографику, дашборды в наглядном и понятном формате; знать основные языки программирования особенно Python и уметь с ними работать; создавать модели машинного мышления, проверять их работу и вносить коррективы; применять модели машинного мышления для решения реальных задач; знать фреймворки TensorFlow, PyTorch, Keras и т. Кроме того, тем, кто хочет продвинуться в этой профессии, необходимо воспитывать в себе следующие качества: Внимательность. Работа специалиста по нейросетям требует крайней педантичности и аккуратности. Представители этой профессии работают с большими объемами данных. Чтобы правильно организовать машинное обучение, им понадобится много сил и времени. Любознательность и обучаемость.

Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи. Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать. В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации. Робот все еще действует механистически и этим вызывает отторжение. Так, например, недавнее исследование показало, что больше половины опрошенных россиян вешают трубку, услышав, что им звонит робот.

А робот сможет лишь озвучить книгу. Но без живых людей здесь не обойтись. Чтобы наложить графику нужна какая-то основа. Например, человек в специальном костюме, его лицо чтобы считывать эмоции. Бенедикт Камбербэтч в костюме для захвата движений в процессе создания образа дракона Смауга для кинотрилогии «Хоббит»: Опытный артист знает все о влиянии на зрителя, а искусственный интеллект в лучшем случае лишь скопирует его. Юристы Одно дело знать закон, а совсем другое — уметь использовать его в пользу клиента особенно, если он сам и нарушил этот закон. А еще нужно уметь строить линию защиты или нападения в судебных заседаниях, приводить подходящие в конкретной ситуации аргументы, убеждать в своей правоте и многое другое. Роботы этого не умеют. Нейросети не так развиты, чтобы отнять работу у людей. Соответственно, лучше всего — научиться использовать их в решении своих задач. Артем Попов, руководитель отдела маркетинга в магазине XCOM-SHOP компьютеры, комплектующие, периферия , рассказал, как их компания использует Midjourney для подготовки красивого визуала. Нейросеть и штатный дизайнер поделили между собой обязанности — нейросеть генерирует креативы, а дизайнер отбирает самые лучшие и дорабатывает их. В результате на работу уходит намного меньше времени на подготовку баннера — в 2 раза , так как не нужно придумывать идеи, искать графику на фотобанках и самостоятельно отрисовывать картинку с нуля. Павел Молянов, руководитель контент-агентства «Сделаем», провел интересный эксперимент — он брал заказы на бирже копирайтинга еТХТ и отдавал их в работу нейросети. Из 8 заказов не удалось сдать один, а еще 2 получились совсем плохо. К каким выводам он пришел: Нейросеть пишет не хуже дешевого копирайтера; Тексты от нейросети можно использовать как драфт, который придется доработать — тогда получится нормальный текст; Нейросеть плохо дорабатывает текст лучше пишет с нуля, чем рерайтит. Что в итоге? Хороший специалист не только не потеряет работу, но и упростит ее — сможет автоматизировать некоторые задачи и сэкономить время. Чат-бот частично подтверждает наши догадки насчет некоторых профессий. ИИ придет туда, где нужна автоматизация. В первую очередь, это производство, транспорт и клиентский сервис. Но даже здесь ИИ отмечает, что он не заменит полностью людей — он лишь освободит их от рутинных задач.

Похожие новости:

Оцените статью
Добавить комментарий