“Плюс” на “плюс” всегда дает положительный ответ. То же самое и с двумя минусами: как при умножении, так и при делении двух чисел со знаком “-” получается положительное число. — Когда все узнали об успехе программы «Минус 100» в 2007 году, приходилось слышать мнение, что тот результат достигнут административным ресурсом. Новости. Американские психологи обнаружили, что добиться согласия легче, если люди, ищущие решение, имеют похожий настрой или черты характера.
Минус на плюс что дает?
При вычитании из определенного числа отрицательное число получается плюс (правило: два минуса дают плюс). Минус умноженный на плюс будет минус. Минус на минус даёт плюс. Минус на минус, плюс на плюс. Умножение и деление отрицательных или положительных чисел в результате дает положительное число. Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда!
Почему минус на минус всегда даёт плюс?
Его выбрали таким, чтобы оно согласовывалось с другими правилами. Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги. Скажем, у Корнея есть 3 рубля. То есть остался у Корнея только долг в 4 рубля. Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего.
Казалось бы мелочь,а если разОБРАться....?
Вот тот самый ПРАВильный равносторонний крест,подробнее о кресте.
Скажем, у Корнея есть 3 рубля. То есть остался у Корнея только долг в 4 рубля. Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус". Этих принципов достаточно, чтобы вывести правило для "минус на минус".
Это пока объяснимо. Мы получили такой же результат, как в модели с должником.
Но теперь давайте чуть подправим задачу и рассмотрим относительное время. Допустим сейчас полдень и поезд находится в точке О. Где он будет через 3 часа, то есть в 3 часа после полудня то есть в 15:00? А где он был за три часа до полудня то есть в 9:00? В точке -300. А теперь самое главное - как через эту модель показать перемножение отрицательных чисел. Пусть поезд едет из Санкт-Петербурга в Москву, то есть имеет отрицательную скорость. Где он был за три часа до полудня?
Вы можете сказать, что отрицательное время — это выдумка и никто им не пользуется. Действительно в числовом виде в быту мы их не так часто используем, а вот на уроках истории вы точно про них слышали. Как объяснить ребенку? У меня есть несколько примеров, хотя бы один из которых удовлетворит любого. Прием 1 В шестом классе школьники уже знакомы со способами решения линейных уравнений. Можно показать ребенку, например вот это : В первом случае мы решаем уравнения, избегая отрицательных чисел. Во втором мы такой целью не задаемся. Иными словами, ответы, полученные с использованием отрицательных чисел не должны отличать от полученных других путем.
Таким образом, мы лишаем себя необходимости искать смысл отрицательных чисел и принимаем их как необходимую и полезную математическую абстракцию. Так вот в этом примере и видно, как, с одной стороны умножение положительных чисел, так и с другой - отрицательных чисел друг на друга дает число положительное! Ведь болт же переместился физически, ощущаемо! Так, например, отрицательные числа из абстракции превращаются в реальность. Я не стал приводить пример с градусником, движущимися навстречу автомобилями, геометрические обоснования их и дают по большей части в школе , совсем сложные для детей примеры с дистрибутивностью умножения, а также некоторые объяснения, построенные на мнемонике, вида: "Враг моего врага - мой друг". Последний вариант, скорее, направлен на запоминание, чем на понимание. Кстати, если Вы хотите прочесть более 80. Совершенно естественно, что в самом начале люди пользовались только натуральными числами — один, два, три и так далее.
Их использовали для того, чтобы посчитать реальное количество предметов. Просто так, в отрыве от всего, цифры были бесполезны, поэтому стали появляться и действия, с помощью которых стало возможно оперировать числами. Абсолютно логично, что самым необходимым для человека стало сложение. Эта операция проста и естественна — подсчитать количество предметов становилось проще, теперь не нужно было каждый раз считать заново — «один, два, три». Заменить счёт теперь стало возможным с помощью действия «один плюс два равно три». Натуральные числа складывались, ответ тоже был натуральным числом. Умножение представляло собой, по сути, такое же сложение. На практике мы и сейчас, например, совершая покупки, так же используем сложение и умножение, как это делали давным-давно наши предки.
Однако порой приходилось совершать операции вычитания и деления. И числа не всегда были равнозначны — иногда число, от которого отнимали, было меньше числа, которое вычитали. То же и с делением. Таким образом и появились дробные числа. Появление отрицательных чисел В документах Индии записи об отрицательных числах появились в VII веке нашей эры. В китайских документах существуют более древние отметки об этом математическом «факте». В жизни мы чаще всего отнимаем от большего числа меньшее. Если же я захочу купить ещё какой-то товар, стоимость которого превышает мои оставшиеся 35 рублей, например ещё одно молоко, то как бы я ни хотел его приобрести, а больше денег у меня нет, следовательно, отрицательные числа мне ни к чему.
Однако, продолжая говорить о современной жизни, упомянем кредитные карты или возможность от мобильного оператора «входить в минус» при звонках.
Сложение и вычитание отрицательных чисел. Что дает плюс на минус.
И вот здесь уже приходят на помощь отрицательные числа: на карте есть 100 рублей, хлеб и два молока обойдутся мне в 110 рублей; после покупки мой баланс по карте составляет -10 рублей. Практически для таких же целей и начали впервые использовать отрицательные числа. Китайцы первыми использовали их для записи долгов или в промежуточных решениях уравнений. Но использование это было всё равно лишь для того, чтоб прийти к положительному числу впрочем, как и наше погашение кредитки. Долгому отвержению отрицательных чисел способствовало то, что они не выражали конкретных предметов. Десять монет — это десять монет, вот они, их можно потрогать, на них можно купить товар. А что значит «минус десять монет»? Они предполагаются, даже если это долг. Неизвестно, вернётся ли этот долг, и превратятся ли «записанные» монеты в реальные. Если при решении какой-нибудь задачи получалось отрицательное число, считалось, что вышел неверный ответ или ответа вообще не существует. Такое недоверчивое отношение сохранялось у людей достаточно долго, даже Декарт XVII век , совершивший прорыв в математике, считал отрицательные числа «ложными».
Дружим с математикой. Рабочая тетрадь Задания пособия позволяют предупредить возможные трудности в усвоении основных тем четвёртого года обучения математике, помогают развить пространственные представления, геометрическую наблюдательность учащихся, сформировать навыки самоконтроля.
Мы часто огорчаемся, когда в нашей жизни случаются такие минусы, но редко задумываемся, что если бы не минусы, то вряд ли бы мы увидели и плюсы. Пока человеку самому не причинят боль минус , он ни за что не поймёт, какова цена поддержки и защиты от боли в любом проявлении плюс. Были ли у кого-то в жизни истории типа "минус на минус дают нам плюс?
Связей нет, средств тоже не особо. Как она старалась, сколько сил потратила, это трудно представить, причем параллельно ещё училась в универе и подрабатывала. Ну так вот пошла неудача за неудачей, в Америку отказывают, там отказывают, сям отказывают, документы не особо выходит собрать и т.
Годом ранее на территории Ростовской области была задержана контрабандная книжная продукция, поступавшая на юг России от имени подставных фирм, фактически же реализацией книжной продукции занималось Эксмо. Такая схема позволяла уклоняться от уплаты налогов. Однако издателям удалось «замять» дело — после трёх месяцев следствия был назван «руководитель преступной группы», бывший сотрудник Эксмо, который и по сей день находится в розыске, а дело против издательства приостановлено. Сейчас аналогичные претензии предъявляются АСТ.
И на фоне «массовости заболевания серыми тиражами» в прошлые годы, удивительна реакция рынка. Российский книжный союз, делами которого заправляет тот же самый «эксмовец» Олег Новиков, фактически «отмежевался» от АСТ. В пресс-релизе союза сообщается, что соглашение «призвано создать обстановку нетерпимости к нарушениям законодательства со стороны недобросовестных участников рынка», которые «подозреваются в экономических правонарушениях, а также использовании фирм-однодневок для ухода от налогов и легализации незаконно полученной прибыли», тем самым «не только дестабилизируют рынок и ущемляют права авторов, но и подрывают репутацию всего издательского бизнеса России». По этому соглашению, издательства обязуются регулярно публиковать в открытых источниках информацию о тиражах изданных ими книг, а также о доле налоговых отчислений и авторских гонораров в общем объеме выручки. В будущем планируется, что эти данные будут размещаться на официальном интернет-сайте Российского книжного союза. Идея прекрасная, кто спорит. Но уж больно это всё похоже на организованную кампанию травли одного из игроков рынка с целью купить его по дешёвке.
Не случайно, сейчас налоговые претензии предъявляются именно АСТ. Кто из нас не помнит множества историй рейдерских захватов, как перед поглощением за бесценок какого-либо значимого актива его вдруг «внезапно» начинали проверять различные контролирующие органы, в том числе и налоговики.
Почему бы нам не использовать одну проблему для решения другой? Блестящее, нестандартное мышление и по-настоящему творческое. Это не просто поиск немного лучшей версии существующего решения.
Это смотреть на то, на что смотрели все остальные, но видеть то, чего больше никто не видел. И для этого нам нужно избавиться от наших предрассудков и заранее сформированных мнений. Снять смирительную рубашку общепринятого мнения. Только тогда наш разум будет достаточно ясен, чтобы думать о немыслимом. Чтобы видеть по-настоящему новые и креативные решения.
Как сказал экономист Дж. Но трудность также заключается и в умении видеть по-другому. Концептуальное мышление вам в помощь!
Правило минус на минус дает
Не важно, что по математическим правилам минус на плюс дает минус. Минус на минус даёт плюс. Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее. Готовься к ОГЭ и ЕГЭ по математике вместе со мной: мне, чтобы задать вопрос или записаться на курсы подготовки.
Минус на минус дает плюс
Она потрясла меня своей логической красотой и я хотел бы показать ее вам. Арифметика футуристических картин 2. Так или иначе, но долгое время после изобретения отрицательных чисел речь шла только об их сложении и вычитании: перемножать отрицательные числа, насколько мне известно, изначально никто не собирался. Чтобы понять, почему сама возможность умножения отрицательных совсем не очевидна, будет полезно пройти историческим путем и разработать какую-нибудь простую модель целых с естественными операциями сложения и вычитания. За основу такой модели мы возьмем один замечательный пример из физики: аннигиляцию электрона и позитрона при их столкновении. Если привести в соприкосновение электронов и электронов и позитронов аннигилируют и в конце останется только позитрона. Этот пример показывает, что реакция группы электронов и группы позитронов выглядит как сложение двух целых чисел противоположного знака. Попробуем придать этой идее точный математический смысл. Представьте, что идет выставка современного искусства в далеком от нас 3141 году.
Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции!
Но у нас, в отличие от бездушной материи, есть свобода, дарованная нам Богом, которая заключается в том, что в нашем распоряжении имеется два варианта поведения — либо сделать свой ход, либо его пропустить. Вы, уверен, достаточно сообразительны, чтобы понять: вместо неживой неразумной природы может выступать живой разумный оппонент. Как, например, в нашем случае. Отсутствие возражений означает согласие, вот и всё.
Во-первых, радость: наконец-то собственные «квадраты», во-вторых, тревога — все накопления отданы, да еще и на 10 лет в ипотечной кабале. И только мысль о том, что часть уплаченных за желанную недвижимость денег можно вернуть в виде имущественного налогового вычета, внушает некоторый оптимизм. О том, как это сделать, наш разговор с начальником отдела налогообложения доходов физических лиц и администрирования страховых взносов УФНС России по Хабаровскому краю Ириной Кожемякиной. Много, но не сразу — Ирина Сергеевна, в каком случае гражданин имеет право на получение имущественного налогового вычета? Они делятся на два вида. Первый оформляется на основе договора купли-продажи. Второй — при заключении договора инвестирования в строительство долевого участия. Отличие в том, что в первом случае заключается договор купли-продажи, и сразу после его подписания происходит переход права собственности. Для получения вычета гражданину необходимо составить декларацию, приложить пакет документов и подать заявление. Во втором регистрация права собственности наступает не сразу, поэтому претендовать на вычет хозяин может только после завершения строительства и подписания акта приема-передачи квартиры. То есть в этом году право на вычет имеет только тот, кто купил недвижимость, в том числе подписал акт приема-передачи в прошлом году или ранее.
Когда два минуса дают плюс. Как понять, почему ";плюс"; на ";минус"; дает ";минус";
Минус, умноженный на минус, дает плюс; минус, умноженный на плюс, дает минус; а знаком минуса является усеченный Ψ, перевернутый вверх ногами, таким образом, Λ [с третьей центральной ветвью]. Минус на минус даёт плюс – это правило, которые мы выучили в школе и применяем всю жизнь. И хоть у НТВ-Плюс накопилось много других минусов, надо остановиться. 4 февраля фондом «Петербургская политика» были опубликованы данные за январь 2013года, определяющие уровень социально-политической устойчивости российских регионов. Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют.
Наши курсы
- Правила знаков
- Аксиома кольца
- Как правильно умножать отрицательные числа?
- Четыре российские школьницы стали победительницами Европейской математической олимпиады
- Когда минус на минус дает плюс?
Минус на минус дает плюс . НСОТ решили усовершенствовать
2) Почему минус один умножить на плюс один равно минус один? _ Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Если рассматривать долг как произведение, то можно объяснить, почему минус на минус дает плюс, а плюс на минус дает минус. Это первое впечатление, со временем все минусы -оказываются плюсы. Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс.
Войти на сайт
Таким образом, минус на минус дает плюс, потому что умножение двух отрицательных чисел приводит к получению положительного результата. Минус на мину даёт плюс. Минус на минус даёт плюс. Из трека Каспийский Груз – Была Не Была на RapGeek. Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее.
Минус на минус дает плюс . НСОТ решили усовершенствовать
А обратное минус пяти будет пять. Со сменой знака меняются стороны на числовой прямой.
Таким образом, снижение ставки ФРС на горизонте шести недель уже зашито в цену рынка — что, впрочем, вряд ли удержит инвесторов и от очередного скачка цен, а то и двух. Если ФРС поведет себя позитивно, это перевесит историю с торговой войной между США и Китаем — потому что дешевая ликвидность поступит в определенные сроки, а с Китаем дело долгое. Фактор ФРС перевешивает и плохую экономику, к сожалению.
Доходность по американским казначейским бумагам низкая, и альтернативы американским акциям нет, так что возможны вливания на рынок и с этой стороны», — считает старший аналитик «БКС Премьер» Сергей Суверов. Особняком на общем бравурном фоне смотрится рейтинговое агентство Fitch, эксперты которого ожидают повышения ставки на 25 б. Конечно, в их рассуждениях есть логика. Американскому фондовому рынку поддержка явно не нужна — он на историческом максимуме, и, как писал Грибоедов, «нельзя ли пожалеть о ком-нибудь другом? Например, сегодня от индекса экономических настроений институциональных инвесторов Германии ZEW никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7 — но он в итоге рухнул до минус 21,1.
В Евросоюзе в целом — та же картина: минус 20,2 при прогнозе минус 3,6 и практически нейтральных минус 1,6 в апреле. Правда, зато у Евросоюза за апрель нарисовалось неплохое сальдо торгового баланса — при прогнозе 8,8 млрд евро вышло целых 15,7 млрд, почти вдвое — правда, в марте было вообще 23,2 млрд евро, но и то хлеб. В то же время рано или поздно рецессия случится.
При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа. Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-». Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат. Ведь «плюс» умножить на «минус» дает «минус». Правда, в дети не слишком-то пытаются вникнуть во все математические нюансы. Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила. Все принимают как данность то, что преподают им учителя, не затрудняясь вникать во все сложности, которые таит в себе математика. Это верно как для целых, так и для дробных чисел. Действительно, а почему? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы запомнили - что вот именно так и больше не задаемся вопросом.
Им бы маисовых лепёшек…» Но бельгиец по имени Барт Витьенс заметил единственное, в чем нет недостатка в бедных странах. И он знал, что у крыс есть много того, чего нет у людей: острое обоняние. Итак, Барт Витьенс начал обучать крыс обнаруживать тротил. Он кормил их, когда они указывали, что чувствуют его запах. Крысы были такими лёгкими, что могли пробегать прямо по минам, не взрывая их. Они принюхивались и начинали копать там, где были мины. Потому что их накормили смесью арахисового масла и бананового пюре, когда они нашли таковое. Барт Витьенс и его команда создали крыс — героев. И они начали обезвреживать мины. Крыса может очистить площадь в 670 кв. Человеку с металлоискателем потребовалось бы на это часы и дни.
Навигация по записям
- Почему минус на минус дает плюс?
- Каспийский Груз - минус на минус дает плюс
- Сложение и вычитание отрицательных и положительных чисел — правило, формулы и примеры
- Справедливая математика: разбираемся в тайнах операции «плюс» и «минус»
Сейчас на сайте
- Или через эл. почту
- Минус на минус даёт плюс или как крысы решили проблему
- Ссылки на контент
- Каспийский Груз - минус на минус дает плюс
- Начать дискуссию
- Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как?
Минус на минус даёт плюс
Модули противоположных чисел равны: у положительного числа он равен самому числу, а у отрицательного — противоположному, то есть положительному. Умножение чисел с одинаковыми знаками Чтобы перемножить два отрицательных числа, надо перемножить их модули. Пример 1. Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус. Пример 2. Пример 3.
По вопросам, связанным с использованием контента Правообладателей, не имеющих Лицензионных Договоров с ООО «АдвМьюзик», а также по всем остальным вопросам, просьба обращаться в службу технической поддержки сайта на mail lightaudio.
Кстати, говорят, именно с бочек с вином математики срисовали знак «минус». Виноделы этим знаком обозначали пустые бочки. После наполнения бочек вином они перечеркивали знак «минус» и получался знак «плюс». По сути, знак «минус» заменял виноделам обычный ноль, ведь он обозначал отсутствие вина в бочке. Но математики ловко присобачили знак «минус» к числам и назвали их «отрицательными». Так что же не так с мёдом и дёгтем в бочках? Мои четыре примера описывают действие сложения — ведь мы прибавляем одно к другому, а математические правила мы рассматриваем для деления и умножения. Это абсолютно разные вещи, сколько бы математики не повторяли, что умножение это и есть сложение. Сложение — это изменение количества. Умножение — это изменение качества. При добавлении ложки дёгтя в бочку мёда, мёд не превращается в дёготь. Мы просто получаем бочку испорченного мёда. Точно так же и дёготь, добавленный в бочку дёгтя, не превращает всё в мёд. При сложении и вычитании положительных и отрицательных чисел действуют совсем другие правила знаков. В чем же отличие качественных изменений от количественных? В единицах измерения, которые в математике предпочитают игнорировать. Вот смотрите. Если мы к метрам длины прибавим метры ширины, мы получим метры периметра. А если мы умножим метры длины на метры ширины, то в результате будут метры квадратные площади. Теперь вопрос к математикам: сколько метров длины или ширины нужно сложить, чтобы получить один метр квадратный площади? Или вопрос к вам: сколько метров ниток вам нужно намотать на себя, чтобы одеться? Ведь ткань — это те же самые нитки, только в совершенно другом качестве. Кстати, правило умножения отрицательных чисел наводит на ещё один вопрос математикам: сколько отрицательных чисел нужно сложить, чтобы получилось одно положительное число? Существуют ли отрицательные числа? Об этом мы поговорим как-нибудь в другой раз.
Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Если у меня есть конфет и я отдам сестре , то у меня останется конфеты, а вот отдать ей конфет я при всем желании не могу. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! Рассмотрим для примера уравнение. Его можно решать так: перенести члены с неизвестным в левую часть, а остальные — в правую, получится , ,. При таком решении нам даже не встретились отрицательные числа. Но можно было случайно сделать и по-другому: перенести слагаемые с неизвестным в правую часть и получить ,.