Определите молекулярную формулу одноатомного спирта, при внутримолекулярной дегидратации 30 г которого выделилось 9 г воды. Межмолекулярная дегидратация этилового спирта. Этанол диэтиловый спирт. Реакция внутримолекулярной дегидратации спиртов. Внутримолекулярная дегидратация спиртов формула.
Химия. 10 класс
Таким образом, ответ на задачу - 1 C2H4 этилен. Почему другие варианты не являются продуктами реакции? Таким образом, продуктом реакции внутримолекулярной дегидратации этанола является только 1 C2H4 этилен.
В ходе такой реакции раствор приобретает характерное фиолетовое окрашивание. Замечу, что в обычных условиях третичные спирты окислению не подвергаются.
Для них необходимы очень жесткие условия, при которых углеродный скелет подвергается деструкции. Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой реакции выпадает маслянистый осадок. Первичные спирты окисляются до альдегидов, а вторичные - до кетонов.
Альдегиды могут быть окислены далее - до карбоновых кислот, в отличие от кетонов, которые являются "тупиковой ветвью развития" и могут только снова стать вторичными спиртами. Качественная реакция на многоатомные спирты Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор окрашивается в характерный синий цвет.
В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье: Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.
В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении: Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Замещение гидроксильных групп Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.
Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена: Химические свойства фенолов Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Реакции с участием гидроксильной группы Кислотные свойства Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы: Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами: Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот — угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту: Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов: 3 Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами.
Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами: Реакции замещения в ароматическом ядре Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом. Галогенирование Реакция с бромом не требует каких-либо особых условий.
В зависимости от количества углеводородных радикалов, которые принадлежат углеродному атому при гидроксильной группе, различают следующие группы одноатомных спиртов: В случае предельных веществ, которыми являются одноатомные спирты, характерна изомерия простым эфирам в виде соединений, обладающих единой формулой. Источник: nauka. В качестве примеров можно привести пропанол 1 н-пропиловый и пропанол-2 изопропиловый. Изомерия углеродного звена, когда меняется расположение гидроксильной группы. Начинается с веществ, обладающих молекулой с четырьмя атомами углерода. Например, 4 неодинаковых изомера соответствуют бутанолу. Межклассовая изомерия с эфирами.
Дегидратация спиртов: химические реакции и катализаторы
этиленОтвет: 1. внутримолекулярная дегидратация. ненасыщенные углеводороды с одной двойной связью. Напишите уравнения реакций межмолекулярной и внутримолекулярной дегидратации этилового спирта.
IV. Внутримолекулярная дегидратация
Различают два основных типа этой реакции: Внутримолекулярная дегидратация - отщепление воды внутри одной молекулы с образованием алкена Межмолекулярная дегидратация - отщепление воды от двух молекул спирта с образованием простого или сложного эфира Механизм реакции в обоих случаях заключается в разрыве связи О-Н и отщеплении протона. На направление реакции влияют такие факторы, как температура, кислотность среды и строение спирта. Для ускорения процесса используются катализаторы - серная кислота, оксид алюминия, цеолиты и др. Получение алкенов дегидратацией спиртов Внутримолекулярная дегидратация спиртов позволяет синтезировать алкены - ненасыщенные углеводороды с одной двойной связью. Этот метод является одним из основных промышленных способов производства алкенов.
При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя. При этом медь восстанавливается до простого вещества. Например, этанол окисляется оксидом меди до уксусного альдегида.
В данных реакциях от одной молекулы спирта отщепляется одна молекула воды. Такая реакция называется внутримолекулярной дегидратацией.
В результате внутримолекулярной дегидратации спиртов образуются алкены. При менее сильном нагревании одна молекула воды может отщепляться от двух молекул спирта: Эта реакция называется межмолекулярной дегидратацией. В результате межмолекулярной дегидратации спиртов образуются простые эфиры.
Углеводородные радикалы в молекуле простого эфира могут быть одинаковыми или различными. Он используется в медицинской практике для наркоза и дезинфекции кожи при проведении инъекций. Обратите внимание, что температуры кипения простых эфиров намного ниже, чем изомерных спиртов.
На рисунке 24. Этанол и диметиловый эфир являются изомерами, их молекулы имеют примерно одинаковые размеры, поэтому, казалось бы, температуры кипения должны быть близки. Напомним, что высокие температуры кипения спиртов объясняются образованием водородных связей между их молекулами.
Для получения a,b-ненасыщенных альдегидов окислением замещенных аллиловых спиртов универсальным окислителем является оксид марганца IV MnO2. Этот реагент окисляет в петролейном эфире или хлористом метилене ненасыщенные спирты с одной или несколькими двойными или тройными связями без изомеризации и перегруппировки, что с успехом используется в синтезе природных соединений. Комплексы хромового ангидрида с пиридином окисляют и вторичные спирты до кетонов с почти количественными выходами. Однако чаще всего для окисления вторичных спиртов используют реактив Джонса - раствор строго рассчитанного количества CrO3 в водной серной кислоте. Важное достоинство реагента Джонса состоит в том, что вторичные спирты, содержащие двойную или тройную связь, быстро окисляются до кетонов без затрагивания кратных связей.
Первичные спирты окисляются реактивом Джонса до карбоновых кислот. Механизм оксиления спиртов под действием хромового ангидрида подробно изучен. Эта реакция включает несколько стадий. Сначала из спирта и CrO3 образуется сложный эфир хромовой кислоты. Во второй, ключевой, стадии имеет место окислительно-восстановительное элиминирование, приводящее к образованию альдегида или кетона и частицы, содержащей Cr IV.
Столь значительный первичный кинетический изотопный эффект показывает, что элиминирование является наиболее медленной стадией, определяющей скорость всего процесса. Установлено, что частицы, содержащие хром IV , также принимают участие в окислении спирта.
Информация
Наиболее распространенным является использование оксида алюминия, обеспечивающего высокие выходы целевых алкенов. Примеры реакций дегидратации спиртов Рассмотрим на конкретных примерах реакции дегидратации некоторых спиртов. Например, из пропанола-1 образуется пропен, из бутанола-1 - бутен-1 и т. Дегидратация глицерина Глицерин является трехатомным спиртом. Его дегидратация идет по механизму E1 с образованием смеси алкенов.
Реакции с участием гидроксильной группы Кислотные свойства Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы: Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами: Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот — угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту: Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов: 3 Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами.
В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами: Реакции замещения в ароматическом ядре Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом. Галогенирование Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола: Нитрование При действии на фенол смеси концентрированных азотной и серной кислот нитрующей смеси образуется 2,4,6-тринитрофенол — кристаллическое взрывчатое вещество желтого цвета: Реакции присоединения.
Рассмотрим их последовательно. Механизм E1 реализуется через карбокатионный интермедиат и включает следующие стадии: Медленный гетеролитический разрыв связи С-О с образованием карбокатиона и уходом гидроксида. Быстрое отщепление протона от соседнего атома углерода с образованием двойной связи в молекуле алкена. Механизм E2 реализуется концертированно, одновременным отщеплением гидроксильной группы и протона от соседнего атома углерода: Механизм межмолекулярной дегидратации Межмолекулярная дегидратация спиртов идет по механизму нуклеофильного замещения SN1 с образованием простых эфиров. Процесс включает: Протонирование гидроксильной группы одной молекулы спирта кислотным катализатором с образованием карбокатиона.
Введение в радикал электроотрицательных атомов или групп например, галогенов увеличивает кислотные свойства спиртов. Спирты взаимодействуют с щелочными металлами с выделением водорода. При взаимодействии спиртов с кислотами образуются сложные эфиры реакция этерификации. Наиболее легко в реакции замещения гидроксогруппы вступают третичные спирты. В результате внутримолекулярной дегидратации спиртов образуются алкены; продуктом межмолекулярной дегидратации являются простые эфиры.
Дегидратация спиртов
Нагревание этанола | Спирты вступают в реакцию внутримолекулярной дегидратации при наличии концентрированной. |
Мир химии: В помощь учителю и учащимся. Предельные одноатомные спирты. | 5.(3 балла) Формула продукта реакции внутримолекулярной дегидратации этанола. |
Химические свойства предельных одноатомных спиртов | Химия онлайн | Пользователь Саня Ширяев задал вопрос в категории Естественные науки и получил на него 1 ответ. |
этанол + H+; – Н2О ↔ R+ + этанол ↔ ROR + H+ → ROH + олефин + H+. - | Отщепление воды от молекул спирта (дегидратация спиртов) в зависимости от условий происходит как внутримолекулярная или межмолекулярная реакция. |
Внутримолекулярная дегидратация этанола уравнение реакции
Формула сгорания спирта. Сгорание спирта. Дегидрирование спиртов механизм реакции. Дегидрирование спиртов на Медном катализаторе. Отщепление нон от этилового спирта дегидратация. Дегидратация спирта c2h5oh. Отщепление воды от спиртов. Отщепление воды у спиртов. Реакция элиминирования спиртов. Этанол элиминирование.
Реакция элиминирования алкенов. Вступающие в реакцию элиминирования. Реакции спиртов с разрывом связи со. За счет разрыва связи с-о происходят реакции спиртов. Нагревание спиртов. Взаимодействие многоатомных спиртов с гидроксидом меди II. Многоатомный спирт с гидроксидом меди II реакция. Реакция с гидроксидом меди 2 при нагревании спирты. Взаимодействие этанола с гидроксидом меди.
Формула продукта реакции внутримолекулярной дегидратации пропанола:. Дегидратация спиртов 2 реакции. Реакция внутримолекулярной дегидратации. Реакция дегидратации спиртов. Межмолекулярная дегидратация первичных спиртов. Межмолекулярная дегидратация спиртов температура. Реакция внутримолекулярной дегидратации спиртов. Продукты реакции дегидратации спиртов. Спирты при нагревании в присутствии серной кислоты.
Этанол в присутствии серной кислоты при нагревании. Реакции дегидратации спиртов протекают в присутствии. Дегидратация в присутствии серной кислоты. Лабораторный способ получения этилена. Дегидратация лабораторный способ получения этилена. Лабораторный способ получения этилена c2h4. Лабораторный способ получения c2h4. Простые эфиры образуются при. Взаимодействие спиртов с серной кислотой.
Простые эфиры при нагревании. Образование диэтилового Спириа. Образование этилового спирта. Получение этилена из этилового спирта. Этиловый спирт получить Этилен. Перегонка спирта от воды. Прибор для разделения смеси спирта и воды. Горение метилового спирта. Сгорание метилового спирта.
Цвет горения метилового и этилового спиртов. Горение этанола. Сравните цвет пламени эфира и спирта. Пламя этанола. Цвет пламени разных спиртов. Определить спирт по цвету пламени.
Такая реакция называется полным окислением. Видео 24. Окисление этанола оксидом меди II Возможно и неполное окисление спиртов. Его можно осуществить следующим образом. Нагреем в пламени спиртовки медную проволоку до красного каления. При этом блестящая поверхность проволоки покроется чёрным налётом оксида меди II вследствие окисления меди: После этого раскалённую проволоку быстро поместим в стакан с небольшим количеством этилового спирта. Проволока при этом опять становится блестящей видео 24. Это свидетельствует о том, что из чёрного оксида меди II образовалась медь. То есть произошло восстановление оксида меди II. Восстановителем является этиловый спирт. С окислением вторичных спиртов вы можете познакомиться, перейдя по ссылке в QR-коде.
При взаимодействии с растворами щелочей спирты не образуют алкоголяты. Спирты не взаимодействуют с водными растворами щелочей. Основные свойства 2. Взаимодействие с галогенводородными кислотами Реакции с разрывом связи С-О Замещение гидроксила ОН на галоген происходит в реакции спиртов с галогеноводородами в присутствии катализатора — сильной минеральной кислоты например, конц. При этом спирты проявляют свойства слабых оснований: Видеоопыт «Взаимодействие этилового спирта с бромоводородом» Реакции этерификации Реакции с разрывом связи О-Н Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима обратный процесс — гидролиз сложных эфиров. Отличительной особенностью этой реакции является то, что атом Н отщепляется от спирта, а группа ОН — от кислоты: Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным. Реакции отщепления Реакции с разрывом связи С-О При действии на спирты водоотнимающих реагентов, например, концентрированной серной кислоты, происходит отщепление воды — дегидратация. Она может протекать по двум направлениям: с участием одной молекулы спирта внутримолекулярная дегидратация, приводящая к образованию алкенов или с участием двух молекул спирта межмолекулярная дегидратация, приводящая к получению простых эфиров. При переходе от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов и уменьшается способность образовывать простые эфиры. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов: б Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта: Такие реакции отщепления называются реакциями элиминирования. Первый член гомологического ряда алканолов — метанол СН3ОН — не вступает в реакции внутримолекулярной дегидратации.
Ch3c o ch3 карбоновая кислота. Окисление спиртов сильными окислителями. Ch3 ch2 Ch Oh ch3. Ag2o катализатор. Окисление ag2o. Окисление альдегидов реакция серебряного зеркала. Реакция серебряного зеркала реакция окисления. Ch3ch2oh nh3. AG nh3 2 Oh. Альдегид AG nh3 2 Oh. Реакции с AG nh3 2 Oh. Ацетальдегид AG nh3 2oh. Этаналь плюс h2. Окисление первичных и вторичных спиртов. Реакция серебряного зеркала с глюкозой. Окисление Глюкозы серебряное зеркало. Реакция серебряного зеркала с муравьиной кислотой. Качественная реакция на глюкозу серебряного зеркала. Реакция альдегидов с реакцией серебряного зеркала. Реакция серебряного зеркала формальдегид уравнение реакции. Качественная реакция на альдегиды серебряного зеркала. Этиламин этанол. Нитроэтан этиламин. Гидрохлорид этиламина. Ацетальдегид реакция серебряного зеркала. Реакция серебряного зеркала альдегидов. H3c-[Ch ch2 2]. Ch2 ch2 o2 AG. Этин этен этанол хлорэтан. C2h5oh ch3cooh цепочка превращений. Превращение из этанола в этаналь. Хлорэтан этанол. Муравьиная кислота реакции. Реакция муравьиной кислоты с гидроксидом меди 2. Муравьиная кислота и гидроксид меди. Муравьиная кислота и гидроксид. Ch3 - ch2 - Ch - ch3 Ch-Ch ch2 - ch2 - Ch - ch3. Окисление спиртов. Окисление вторичных спиртов. Реакция окисления спиртов. Окисление этанола. Пропанон h2 катализатор. Ch тройная связь Ch h2o. Метанол плюс аммиачный раствор оксида серебра. Метанол с аммиачным растворомоксидом серебра. Метанол аммиачный раствор оксида серебра реакция. Взаимодействие метанола. Реакция серебряного зеркала реактивы. Реакция серебряного зеркала с глюкозой уравнение. Реакция серебряного зеркала с бутином-1. Реакция серебряного зеркала с аммиаком. Реакция серебряного зеркала AG nh3 2 Oh. Уравнение реакции серебряного зеркала нитрат серебра. Реакция образования серебряного зеркала. Реакция серебряного зеркала с кетонами. Химические свойства альдегидов реакции окисления. Ch3oh Cuo t реакция. Ch3ch2oh Cuo t реакция. Реакция серебряного зеркала с альдегидом уравнение. Реакция серебряного зеркала альдегидов уравнения реакций. Растворимость спиртов в воде. Физические свойства этанола. Физические свойства спиртов. Пропанол и метанол. Альдегид плюс. C4h9 альдегид. Окисление h2o2 альдегидов. Восстановление альдегидов формула.
Химические свойства спиртов
Внутримолекулярная дегидратация 1,2-диолов может привести к образованию неустойчивого енола, превращающегося затем в карбонильное соединение. Внутримолекулярная дегидратация 1,2-диолов может привести к образованию неустойчивого енола, превращающегося затем в карбонильное соединение. A) диметиловый эфир B) виниловый спирт C) этилен D) диэтиловый эфир.
Дегидратация спиртов: химические реакции и катализаторы
Вторичный карбокатион, в свою очередь, может также изомеризоваться в третичный, который максимально стабилен: Рисунок 5. Таким образом, при дегидратации изоамилового спирта образуется смесь из 3-метил-1-бутену, 2-метил-2-бутена и 2-метил-1-бутена, причем больше всего в продуктах реакции будет 2-метил-2-бутена как самого разветвленного продукта. Рисунок 6.
Быстрое отщепление протона от соседнего атома углерода с образованием двойной связи в молекуле алкена. Механизм E2 реализуется концертированно, одновременным отщеплением гидроксильной группы и протона от соседнего атома углерода: Механизм межмолекулярной дегидратации Межмолекулярная дегидратация спиртов идет по механизму нуклеофильного замещения SN1 с образованием простых эфиров. Процесс включает: Протонирование гидроксильной группы одной молекулы спирта кислотным катализатором с образованием карбокатиона. Нуклеофильная атака со стороны гидроксильной группы другой молекулы спирта с образованием связи C-O-C. Уход молекулы воды и регенерация кислотного катализатора.
Простые эфиры используются как растворители для жиров, смол, красителей и лаков. Также они используются в качестве растворителей в органических реакциях. Некоторые эфиры применяют как анестетики, топливные присадки для повышения октанового числа и смазочные масла. Анестетики — лекарственные средства, обладающие способностью вызывать уменьшения чувствительности тела или его части вплоть до полного прекращения восприятия информации об окружающей среде и собственном состоянии - анестезию. Некоторые простые эфиры являются инсектицидами и фумигантами, поскольку их пары токсичны для насекомых. Ароматические простые эфиры находят применение в качестве антиоксидантов и консервантов.
Внутримолекулярная дегидратация спиртов условия. Внутримолекулярная дегидратация c8h6o4. Внутримолекулярная и межмолекулярная дегидратация спиртов. Внутримолекулярная дегидратация спиртов примеры.
Нагревании этанола выше 140. При нагревании этанола выше 1400 c в присутствии н2so4 получается. Ацетилен Этилен этанол диэтиловый эфир. Реакция межмолекулярной дегидратации спиртов. Межмолекулярная дегидратация изобутилового спирта. Пропанол межмолекулярная дегидратация. Диэтиловый эфир межмолекулярная дегидратация. Дегидратация спиртов серной кислотой. Межмолекулярная дегидратация этилового спирта. Этанол диэтиловый спирт.
Дегидратация спиртов уравнение реакции. Этанол плюс серная кислота концентрированная 180. Формула горения этилового спирта. Горение спиртов. Формула сгорания спирта. Сгорание спирта. Дегидрирование спиртов механизм реакции. Дегидрирование спиртов на Медном катализаторе. Отщепление нон от этилового спирта дегидратация. Дегидратация спирта c2h5oh.
Отщепление воды от спиртов. Отщепление воды у спиртов. Реакция элиминирования спиртов. Этанол элиминирование. Реакция элиминирования алкенов. Вступающие в реакцию элиминирования. Реакции спиртов с разрывом связи со. За счет разрыва связи с-о происходят реакции спиртов. Нагревание спиртов. Взаимодействие многоатомных спиртов с гидроксидом меди II.
Многоатомный спирт с гидроксидом меди II реакция. Реакция с гидроксидом меди 2 при нагревании спирты. Взаимодействие этанола с гидроксидом меди. Формула продукта реакции внутримолекулярной дегидратации пропанола:. Дегидратация спиртов 2 реакции. Реакция внутримолекулярной дегидратации. Реакция дегидратации спиртов. Межмолекулярная дегидратация первичных спиртов. Межмолекулярная дегидратация спиртов температура. Реакция внутримолекулярной дегидратации спиртов.
Продукты реакции дегидратации спиртов. Спирты при нагревании в присутствии серной кислоты. Этанол в присутствии серной кислоты при нагревании. Реакции дегидратации спиртов протекают в присутствии. Дегидратация в присутствии серной кислоты. Лабораторный способ получения этилена. Дегидратация лабораторный способ получения этилена. Лабораторный способ получения этилена c2h4.
Как составить реакции дегидратации этанола
Спирты — органические вещества, содержащие группу -OH Делятся на 3 группы: При комнатной температуре метанол, этанол, этиленгликоль и глицерин — жидкости. С увеличением количества углеродов спирты становятся твердыми веществами. 45,6 г. Вычислите массу спирта, вступившего в реакцию (дегидратация прошла по внутримолекулярному и межмолекулярному типу). Пример внутримолекулярной дегидратации спиртов – синтез этилена из этилового спирта, протекающий в присутствии Al2O3 или под действием H2SO4, например. Реакция внутримолекулярной дегидратации спиртов. Внутримолекулярная дегидратация спиртов формула. Реакции дегидратации спиртов. (реакции отщепления – элиминирования). Пример внутримолекулярной дегидратации спиртов – синтез этилена из этилового спирта, протекающий в присутствии Al2O3 или под действием H2SO4, например.
Смотрите также
- В результате дегидратации из этанола может образоваться
- Продукт реакции внутримолекулярной дегидратации этанола
- § 24. Химические свойства, получение и применение спиртов
- Формула продукта реакции внутримолекулярной дегидратации - id1171401 от Olegg9 17.01.2023 09:48
- Химические свойства предельных одноатомных спиртов | Химия онлайн
- Химия. 10 класс