Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении.
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
Результаты этого проекта легли в основу 11 национальных стандартов разработки и применения ИИ для клинической медицины. Проекты по исследованию возможностей ИИ в столичном здравоохранении реализуют единым фронтом несколько команд Комплекса социального развития Правительства Москвы — от разработки принципиально новых для страны ИИ-сервисов, тестирования прототипов до масштабного внедрения готовых продуктов. Мы разрабатываем и реализуем собственные подходы по применению ИИ в здравоохранении, с исследовательским скепсисом подходим к информации о возможностях тех или иных технологий, все проверяем и тестируем на своей базе. В последних отчетах исследовательских и консалтинговых компаний о цикле развития новейших технологий генеративный ИИ находится на пике завышенных ожиданий — о нем много говорят, с ним экспериментируют. Однако говорить о его массовом внедрении, в первую очередь в медицине, пока рано — нет ни одного готового продукта с понятным сценарием использования и доказанными эффектами для роста производительности труда или повышения качества медицинского обслуживания, диагностики или лечения. Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу. Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет. Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов. И возможно, не все сразу принесут желаемые результаты.
Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места. Насколько они достоверны? И это, безусловно, гигантские объемы данных. Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины. Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных.
Совместно мы определяем набор необходимых сведений, определяем требования к обязательности полей — стремимся собирать только востребованные данные. Эта работа позволяет нам собирать данные не «в один котел» наряду с неструктурированными данными так называемого озера данных, а в структурированном виде с формализованными значениями там, где это нужно и возможно. Это важно для синхронизации понятийного аппарата, одинаковой интерпретации сущностей в физическом и цифровом мире. При формировании нового стандарта оказания экстренной помощи на фактических данных мы увидели рассогласованность в наименованиях и емкости терминов одних и тех же лабораторных и инструментальных исследований клинический анализ крови или общий клинический анализ крови — минимальное отклонение в одно слово, а для анализа и обработки — это разные единицы данных. В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины. В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением.
С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра.
На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов. Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью ИИ. Таким образом, был завершен первый этап внедрения в систему здравоохранения и рутинную медицинскую практику технологий компьютерного зрения.
Этот инструмент помогает на основе жалоб пациента подобрать наиболее вероятные диагнозы, а врач уже решает, соглашаться ли с ними. Третий — чат-бот, собирающий жалобы пациентов на самочувствие перед посещением врача. Он опрашивает пациента и передает данные врачу. Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза.
Сервис был запущен в 2021 г. И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ. Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона.
Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских. К концу 2023 г. Недоверие и интерес бизнеса Несмотря на столь массовое внедрение ИИ в столичное здравоохранение, эксперты отмечают несколько принципиальных проблем. Первая, как это ни странно, недоверие не только пациентов, но самих врачей к нейросетям.
Об этом, в частности, говорится в докладе АНО «Цифровая экономика» — «Эффективные решения на базе ИИ в здравоохранении», который есть в распоряжении редакции. Специалисты признают и дефицит кадров, способных эффективно работать со сложными нейросетями.
На платформе размещаются приоритетные клинические задачи и дата-сеты для разработчиков технологий ИИ. Платформа Минздрава России призвана помочь медсообществу формулировать актуальные клинические задачи, организовывать сбор и разметку медицинских сведений, публиковать задачи и созданные под них дата-сеты.
Описания задач и дата-сетов доступны публично, доступ к дата-сетам, размещенным на платформе, получит любая российская аккредитованная IT-организация. Во-вторых, были приняты стандарты в области ИИ в здравоохранении. Напомним, в феврале 2022 года Россия приняла несколько стандартов в области ИИ в медицине. Среди первых стандартов: «Интеллектуальные методы обработки медицинских данных.
Основные положения»; «Системы ИИ в клинической медицине — программа, методика клинических испытаний»; «Стандарт управления изменениями в системах ИИ с непрерывным обучением». Разрабатывается еще более 120 стандартов. Все это благодаря платформенному подходу. В 2019 году в Москве начался эксперимент по внедрению в систему столичного здравоохранения ИИ и цифрового зрения, старт которого пришёлся на то время, когда на мировом рынке только появились попытки обучить алгоритмы ИИ решению практических задач.
Первая цель была направлена на то, чтобы опередить иностранных конкурентов, рассказал замруководителя Департамента здравоохранения Москвы Илья Тыров. По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта. Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции.
Так, в 2020-2022 годах на апробацию решений в рамках эксперимента выделено 900 млн рублей. По словам Ильи Тырова, ИИ в московском здравоохранении используется для поддержки решений в диагностике.
Благодаря своим вычислительным возможностям и способности обрабатывать и анализировать большие объемы данных, искусственный интеллект может помочь в определении и понимании этих сложных и необычных состояний. Искусственный интеллект использует алгоритмы машинного обучения и глубокого обучения для анализа различных типов данных, таких как медицинские изображения, генетическая информация, результаты лабораторных анализов и многое другое.
При помощи этих данных искусственный интеллект может выявлять корреляции, паттерны и скрытые взаимосвязи между различными заболеваниями и их симптомами. Одной из самых важных функций искусственного интеллекта в диагностике редких и генетических заболеваний является распознавание нежелательных генетических вариантов. Используя мощные алгоритмы, искусственный интеллект может анализировать генетическую информацию пациента и сравнивать ее с базами данных геномов, чтобы идентифицировать редкие или мутационные гены, которые могут быть связаны с заболеванием. Благодаря такому анализу искусственный интеллект может помочь в определении вероятности развития определенного генетического заболевания у пациента, что позволяет врачам принимать ранние меры по предупреждению или лечению.
Он также может помочь в выборе наиболее эффективных методов лечения, учитывая индивидуальные особенности пациента и его генетическую предрасположенность. Кроме того, искусственный интеллект может помочь в исследованиях редких и генетических заболеваний путем анализа большого объема данных о пациентах. Это позволяет ученым выявлять новые паттерны и корреляции, определять новые подтипы заболеваний и разрабатывать инновационные методы лечения. Искусственный интеллект является мощным инструментом в борьбе с редкими и генетическими заболеваниями, обеспечивая более точную диагностику, персонализированное лечение и новые направления исследований.
Это открывает новые перспективы для пациентов, страдающих от этих сложных состояний, и помогает предотвратить прогрессирование заболевания и улучшить качество их жизни. Искусственный интеллект в процессе лечения: персонализированная медицина и индивидуальные прогнозы Искусственный интеллект ИИ в медицине привносит новые возможности в процесс лечения, делая его более персонализированным и эффективным. Благодаря ИИ, врачи и исследователи получают доступ к огромным объемам данных, анализ и обработка которых помогают прогнозировать результаты лечения и предсказывать индивидуальные характеристики пациентов. Использование ИИ в процессе лечения способствует развитию персонализированной медицины, где каждому пациенту предлагается индивидуальный подход и оптимальный план лечения.
Алгоритмы машинного обучения и искусственные нейронные сети позволяют анализировать множество факторов, таких как генетическая предрасположенность, медицинская история, прогнозируемые реакции на определенные лекарственные препараты и другие факторы, которые могут влиять на эффективность лечения. Искусственный интеллект также помогает врачам прогнозировать и предотвращать возможные осложнения и побочные эффекты лечения. Анализ данных, полученных от предыдущих пациентов с аналогичными характеристиками и диагнозами, позволяет предсказывать вероятность возникновения определенных проблем и рекомендовать соответствующие меры по их предотвращению. Применение ИИ в медицине также способствует улучшению диагностики.
Алгоритмы искусственного интеллекта могут сравнивать медицинские снимки и анализировать отклонения, которые человеческий глаз может упустить. Таким образом, ИИ помогает врачам выявлять заболевания на более ранних стадиях и принимать соответствующие меры для лечения их. Искусственный интеллект в медицине — это один из инновационных инструментов, который помогает улучшить процесс лечения пациентов. Персонализированная медицина и индивидуальные прогнозы, основанные на анализе данных, позволяют врачам предоставлять наиболее оптимальные варианты лечения каждому пациенту в зависимости от его индивидуальных потребностей и рисков.
Это открывает новые возможности для более эффективного и успешного лечения пациентов в будущем. Возможности искусственного интеллекта в развитии новых методов лечения и терапии Искусственный интеллект предоставляет огромные возможности для развития новых методов лечения и терапии в медицине. Благодаря использованию алгоритмов искусственного интеллекта, медицинские учреждения и специалисты в области здравоохранения могут значительно улучшить качество и эффективность лечения.
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ.
Собянин: ИИ превратится в базовую медицинскую технологию в Москве
ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня | Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? |
Главные тренды развития искусственного интеллекта в медицине | MedAboutMe | В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. |
Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время | Как присутствие искусственного интеллекта влияет на современную российскую медицину? |
Искусственный интеллект в медицине: примеры применения в мире и России | Области применения технологий на основе искусственного интеллекта быстро расширяются, в частности, умные технологии приходят на помощь врачам и пациентам. |
Искусственный интеллект создал новое лекарство всего за 21 день | Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. |
Полная роботизация: как искусственный интеллект помогает врачам
Проект преследует цель не только оптимизировать принятие клинических решений, но и улучшить получение медицинского образования. Одной из таких программ является IBM Medical Sieve, которая в среднем более точно выявляет дефекты и новообразования, что позволяет сократить время диагностики и уменьшить возможность упущения важных данных. Главной задачей этого проекта является создание системы умственного ассистента для лучевых диагностов и кардиологов, которая бы действовала как фильтр и быстро обнаруживала аномалии, используя общий анализ изображений, текста и клинических данных. Израильская компания MedyMatch разрабатывает ИИ, способный оценивать компьютерные томограммы и находить любые отклонения от нормы.
MaxQ будет применяться в первую очередь для ранней диагностики травм черепа, инсульта и определения его вида геморрагический или ишемический в машинах неотложной помощи, что позволит медицинскому персоналу быстрее начать лечение. ИИ для пациентов Использование ИИ не ограничивается его применением медицинскими сотрудниками - также нейронные сети могут оказывать помощь пациентам. Существует «приложение-медсестра» - Sense.
На экране телефона пациента появляется анимированная медсестра, которая задает вопросы о самочувствии, узнает нет ли жалоб. Приложение может сразу отправить результаты опроса врачу, напомнить о приеме лекарств, помочь в случае необходимости связаться с доктором по видеосвязи. Для людей, страдающих сердечно-сосудистыми заболеваниями разработана программа AliveCor, способная делать запись ЭКГ в любом месте с помощью смартфона и специальных детекторов, а после сообщать об отклонениях.
В первую очередь, ИИ направлен на выявление аритмий. Еще одним полезным мобильным приложением является Babylon Health, позволяющим из любой точки Земли и в любое время получить онлайн-консультацию врача со стажем не менее 10 лет. А чат-бот поможет предварительно по симптомам, которые ему опишет пациент, поставить диагноз, а также даст краткую справку об этом заболевании.
ИИ для распознавания заболеваний по фотографиям Создаются программы, которые с помощью анализа фотографии и сопоставления их с загруженной базой данных, смогут обнаружить наличие патологии. Face2Gene - это основанная на ИИ программа, позволяющая диагностировать по фотографии многие генетические заболевания. Для ИИ составлен алгоритм определения фенотипических признаков различных синдромов, с которыми нейронная сеть сравнивает снимок и делает заключение о наличии отклонений.
Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся. Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных. Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств. Созданная база помогла при разработке лекарства от синдрома Мартина-Белл. За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований.
Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется.
К выбранному диагнозу врачу предлагаются пакетные назначения. Такой «синтез» искусственного и естественного интеллекта. В этом году внедрен диагностический ассистент при постановке заключительного диагноза во взрослых поликлиниках. Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись.
В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает. Поэтому в алгоритмизированных задачах он может превзойти человека.
Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат. Также способность ИИ анализировать гигантские объемы данных позволит учитывать влияние неочевидных факторов на развитие рисков и заболеваний. То, что недоступно возможностям человека в условиях временных ограничений.
ИИ может в считаные минуты обрабатывать полный объем данных и просчитать все взаимосвязи, учесть ретроспективные данные. Однако эффективная работа ИИ возможна только в результате совместных усилий ученых, экспертного врачебного сообщества и разработчиков. Последнее слово будет оставаться за врачом. Это позволит держать работу ИИ под контролем, объективно оценивать алгоритмы и видеть потенциал развития.
На основе медицинской истории пациента, данных о его образе жизни формируется цифровой двойник пациента. Это позволит перейти от всеобщей унификации к персонализированному здравоохранению. Извлечь ценность из этих данных можно при помощи ИИ. ИИ-помощники смогут формировать необходимый набор профилактических мер, обследований для конкретного пациента, назначения, исходя не из установленных стандартов, а индивидуальные, в том числе учитывая резистентность к лекарственным препаратам, аллергоанамнез пациента и другие важные индивидуальные особенности.
ИИ сможет освободить, с одной стороны, врача от рутины, а с другой стороны — стать персонализированным помощником для пациентов. Умным и эмпатичным, который сможет ответить на определенные вопросы, помочь подготовиться к исследованиям, оптимизировать прием препаратов. ИИ станет помощником в проактивном выявлении рисков развития заболевания и диагностировать болезнь не на стадии ее проявления или обострения, а заранее выявить риск и сформировать набор мер для предотвращения ее развития. В будущем сервисы ИИ могут стать «младшим научным сотрудником», помогая врачам и ученым в научных и клинических исследованиях.
Все мы хотим меньше соприкасаться с системой здравоохранения, переживать о своем здоровье, а если все же пришлось — получить быстрый, искренний и качественный сервис. Врачи, со своей стороны, хотят заниматься лечением, а не административными вопросами, избавиться от рутины.
Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта.
С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом.
Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить. Далее анализатор берёт нужный объём крови на исследование, помещает в реакционную ячейку внутри прибора, добавляет необходимые реагенты, проводит реакцию, одновременно записывая в память её протокол, считывает результат исследования и передаёт его в ЛИС.
Врачу остаётся только принять результат и проконтролировать на соответствие установленным требованиям значение, полученное с прибора. Или, если есть необходимость, отправить пробу на повторное исследование". Робот со скальпелем Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами.
AI-платформа для анализа медицинских изображений
В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом. Платформа Искусственного интеллекта Минздрава России — первый национальный проект, объединяющий медицинское сообщество и разработчиков решений на основе технологий машинного обучения и искусственного интеллекта (ИИ). Сегодня искусственный интеллект помогает находить признаки заболеваний по более чем 20 направлениям, а количество обработанных с помощью него лучевых исследований уже превысило 11 миллионов.
Искусственный интеллект в медицине: применение и перспективы
Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. Многие россияне опасаются применения ИИ в медицине. Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом. Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность?
Искусственный интеллект в медицине — не конкурент, но помощник
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли | Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. |
Платформа ИИ Минздрав | Искусственный интеллект в здравоохранении, который когда-то был областью научной фантастики, теперь стал реальностью. |
Искусственный интеллект в медицине: пример того, как ИИ улучшает здравоохранение / Skillbox Media | Сбор данных и искусственный интеллект в медицине. |
Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город | «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. |
Искусственный интеллект в медицине: главные тренды в мире
Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины — СП.АРМ | Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г. |
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией - Новости | Медицина с использованием искусственного интеллекта уже начинает широко применяться в рутинной практике. |
Искусственный интеллект в медицине и здравоохранении | Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. |
Подписка на дайджест
- Прошу удалить мой номер
- Будущее рядом: как нас будет лечить искусственный интеллект?
- ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр
- Будущее рядом: как нас будет лечить искусственный интеллект? — Реальное время
Какие есть препятствия на пути внедрения ИИ в медицину?
- Искусственный интеллект в медицине и здравоохранении | Примеры
- Искусственный интеллект в медицине: применение и перспективы
- Применение искусственного интеллекта в медицине | ComNews
- Роман Душкин: «Медицина — это область доверия»
Нейросети в качестве врача: как искусственный интеллект влияет на развитие медицины
Особенно актуальными перечисленные технологии стали с началом борьбы с пандемией COVID-19, когда профессиональных ресурсов очевидно не хватало: на ИИ можно было переложить часть рутинных задач, требовавших скорости, точности, чёткости и других важных характеристик. О том, что привнёс в медицину искусственный интеллект, и как отразилось на здравоохранении его внедрение, мы поговорили с исследователем мирового масштаба, обладательницей множества престижных наград государственного уровня, генеральным директором Национального института искусственного интеллекта и руководителем отдела исследований и разработок НЛИИ Милковой Эрикой Геннадьевной. В чём его основная положительная роль? Необходимо вкладываться в эту сферу не только потому, что это престижное направление, и исследования по нему позволяют не отставать от уровня мирового здравоохранения. В первую очередь, ИИ нужен для оптимизации медицинской сферы нашей страны. Данную оптимизацию я вижу в снижении роли человеческого фактора в лечении пациентов, в разгрузке медперсонала от рутинной работы, в автоматизации и стандартизации определённых протоколов.
У искусственного интеллекта обширная область применения. В качестве примера могу привести устройства, обеспечивающие автоматическую индивидуальную оптимизацию параметров электроимпульса с помощью биологической обратной связи. Я принимала определённое участие в разработке и продвижении этих устройств, чьё назначение заключается в воздействии на нервную, эндокринную, дыхательную и иммунную системы человека одновременно. Чтобы получить одобрение Минздрава РФ , пришлось подготовить убедительную аргументацию о необходимости данной разработки, обосновать для чиновников ценность таких устройств.
На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. В 2020 г. Экспоненциальный рост числа исследований, как правило, сопровождается постоянным расширением круга решаемых задач.
Поэтому мы не будем претендовать на исчерпывающую картину применения ИИ в медицине, а попытаемся очертить наиболее успешные или перспективные с нашей точки зрения направления. ИИ в хирургии Речь идет о роботах, участвующих в хирургических операциях и сопровождающих хирургические операции и послеоперационных больных. В 2018 г. Важно заметить, что термин «робот» часто создает неправильное представление о том, что роботы выполняют хирургические операции. Это не совсем так. Роботы с искусственным интеллектом применяются все чаще в микрохирургических процедурах. Но не следует считать, что скоро будут оперировать только роботы-хирурги.
Зато справедливы ожидания, что роботы с ИИ помогут хирургам работать лучше. Роботизированная хирургия — это активно развивающаяся и эффективная технология, которая приобретает все большее значение при различных медицинских процедурах в неврологии, гинекологии, ортопедии, торакальной и общей хирургии, при установке зубных имплантатов, а также трансплантации волос. Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции.
Робот входит в грудную клетку через небольшой разрез ниже грудины.
Медицинское изображение сразу попадает в Единый радиологический информационный сервис ЕРИС города Москвы, откуда по заданным правилам оно автоматически отправляется на анализ ИИ. Результат работы ИИ в виде дополнительной серии в изображении с цветовой маркировкой находок и текстовым описанием в формате Dicom SR автоматически возвращается в ЕРИС. Врач-рентгенолог при интерпретации исследования может воспользоваться выводами и расчетами искусственного интеллекта. Готовое описание сохраняется в ЕРИС и сразу доступно лечащему врачу и пациенту в электронной медицинской карте. Результаты Реализация проекта позволила создать рынок сервисов искусственного интеллекта в лучевой диагностике, где поддерживается конкурентная среда разработчиков ИИ-сервисов.
В результате эксперимента разработаны и внедрены уникальные научные методологии, на основе которых подготовлено свыше 200 эталонных наборов данных, создана первая в Российской Федерации официальная библиотека наборов данных для сферы здравоохранения.
Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами.
Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах.
В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков.
Всё дело в доверии. Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта.
Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум.
Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети. При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики. Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза.
Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту. Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую. Новая серия стандартов «Системы искусственного интеллекта в клинической медицине» начала действовать с 1 марта 2022 года. ГОСТ был разработан под руководством Научно-практического клинического центра диагностики и телемедицинских технологий Департамента здравоохранения города Москвы. Раньше ИИ в российской медицине находился, по сути, в серой зоне.
Эксперт объяснил провал искусственного интеллекта в медицине
Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины. Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных. Совместно мы определяем набор необходимых сведений, определяем требования к обязательности полей — стремимся собирать только востребованные данные. Эта работа позволяет нам собирать данные не «в один котел» наряду с неструктурированными данными так называемого озера данных, а в структурированном виде с формализованными значениями там, где это нужно и возможно. Это важно для синхронизации понятийного аппарата, одинаковой интерпретации сущностей в физическом и цифровом мире. При формировании нового стандарта оказания экстренной помощи на фактических данных мы увидели рассогласованность в наименованиях и емкости терминов одних и тех же лабораторных и инструментальных исследований клинический анализ крови или общий клинический анализ крови — минимальное отклонение в одно слово, а для анализа и обработки — это разные единицы данных.
В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины. В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением. С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения. В арсенале столичных рентгенологов сегодня 6 комплексных сервисов для анализа КТ органов грудной клетки, органов брюшной полости.
Такие сервисы в рамках одного исследования выявляют сразу несколько патологий и формируют заключение. Всего в рамках проекта ИИ-сервисы проанализировали уже 12 миллионов лучевых исследований. Более того, если раньше ИИ-решения в медицине рассматривались в первую очередь как системы поддержки принятия врачебных решений, то сегодня мы делаем первые шаги в сторону системной автоматизации производственных процессов. Так, на базе эксперимента технологии ИИ достигли того уровня зрелости, когда мы начинаем «делегировать» искусственному интеллекту отдельные диагностические задачи. В этом году мы запускаем пилотный проект в рамках территориальной программы обязательного медицинского страхования по применению ИИ в автономном режиме, без участия врача — для проекционных методов исследований, флюорографии и рентгенографии органов грудной клетки. ИИ будет сортировать все исследования взрослых пациентов, сделанные в поликлиниках, на те, где достоверно отсутствует патология, и те, где есть признаки заболевания. Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу. При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками.
Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза.
Если эта фаза пройдет успешно, испытание продолжится с большим количеством вовлеченных людей. Текущее исследование займет около 12 недель, а его итоги планируется подвести в следующем году. Проблема в том, что он с той же эффективностью способен создавать и новые отравляющие вещества и оружие.
ИИ — сам по себе потенциальное оружие, которое нуждается в жестком контроле. Что же касается усилий по созданию с его помощью новых средств спасения жизней, то это можно только приветствовать». Еще два препарата, созданных Insilico Medicine при участии ИИ, сейчас проходят клинические испытания: лекарство от COVID-19 на первой фазе и препарат против онкологических заболеваний, который должен будет помочь в лечении твердых опухолей.
Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее. В России этой сфере уделяется особое внимание. Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии. В их число вошли Botkin. Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза. Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт.
Конференция "Вычислительная биология и искусственный интеллект для персонализированной медицины — 2024" - яркое ежегодное событие для врачей, ученых, представителей IT-отрасли и всех специалистов, которых волнуют вопросы медицины будущего. Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике.