Новости рак нервной системы

развитие нейрофиброматоза 2-го типа (это заболевание, связанное с поломками генов, при котором формируются множественные опухоли – шванномы либо менингеомы в области нервов и нервной системы). Онколог Ирина Олейникова из ФНКЦ ФМБА назвала 7 часто встречающихся вирусов, которые могут спровоцировать развитие рака. Диагностика: стандарт инструментальной диагностики опухолей центральной нервной системы — МРТ с внутривенным контрастированием.

РИАН: Ученые из РФ нашли способ для борьбы с раком нервной системой

Флуоресцентные технологии позволяют «подсветить» определенные участки организма при помощи специальных красителей, что дает возможность изучать запутанную паутину нервов. Так, ученые начали перепрограммировать определенные ткани, чтобы при росте опухоли те окрашивались в красный цвет. Это позволяет отлавливать отдельные раковые клетки, если они отделились от общей массы и потенциально могут привести к образованию метастазов. В последние годы исследователи все чаще уделяют внимание роли нервной системы в развитии опухоли. Все химические процессы, происходящие в тканях, поддерживаются мозгом. Питание для тканей не исключение, поэтому скрытая роль нервной системы в развитии рака может быть очень значительной. Ее поддержка нужна онкоцитам из-за их высокой скорости роста.

В то время как введение 6OHDA новорожденных мышам приводит к постоянной симпатэктомии, у взрослых она носит временный характер, так как адренергические нервные окончания вырастают через несколько недель [ 29, 30]. Как на трансгенных, так и на ортотопических мышиных моделях рака молочной железы длительная химическая симпатэктомия при помощи 6OHDA снижает внутриопухолевые уровни норадреналина и ингибирует рост опухоли [31]. Подобный ингибирующий эффект на рост опухоли был зарегистрирован после симпатэктомии с помощью 6OHDA на ортотопических и трансгенных мышиных моделях меланомы и рака простаты [2,5,32].

Анализ экспрессии генов из лазерной микродиссекции стромы предстательной железы выявил сходные паттерны экспрессии генов как из хирургически, так и из химически денервированных простат, что указывает на то, что оба подхода дают эквивалентные результаты [33]. Рак предстательной железы развивается из железистого эпителия [34], который в значительной степени иннервируется адренергическими нервами, а рак поджелудочной железы в основном происходит из протокового эпителия в экзокринной части поджелудочной железы, который иннервируется сенсорными и адренергическими, а также частично холинергическими нервами [35, 36]. В отличие от адренергической иннервации, которая равномерно распределена по поджелудочной железе, сенсорная иннервация наиболее выражена в головке т.

Головка поджелудочной железы является местом, где возникает большинство видов злокачественных новообразований этого органа. В исследованиях, где применяли химическую денервацию чувствительных нервов таблица 1 , три группы независимо продемонстрировали, что неонатальная деплеция чувствительных нервов уменьшает инициацию предракового состояния — панкреатической интраэпителиальной неоплазии PanIN и ингибирует переход от стадии PanIN к аденокарциноме протокового эпителия PDAC вавтохтонных трансгенных мышиных моделях рака поджелудочной железы, которые точно воспроизводят патологию человека [10,11,39]. Подобно проонкогенному вкладу чувствительных нервов в прогрессирование рака поджелудочной железы, было также показано, что снижение уровня чувствительного нейропептида — субстанции Р, уменьшает метастазирование в ортотопической мышиной модели рака молочной железы [7].

Большинство видов рака молочной железы развивается из протокового эпителия [40], при этом в опухолевый процесс дополнительно вовлекаются чувствительные нервы. В дополнение к большому чувствительному компоненту в брюшной полости, блуждающий нерв также обеспечивает парасимпатическую иннервацию поджелудочной железы [41]. Парасимпатические холинергические нервы иннервируют в основном строму и железистый эпителий поджелудочной железы [36,42].

В отличие от химической денервации чувствительного компонента блуждающего нерва при помощи резинифератоксина или капсаицина , хирургическая перерезка блуждающего нерва которая разъединяет как парасимпатические, так и сенсорные аксоны в смешанном нерве , продемонстрировала в двух независимых группах ускорение прогрессирования рака поджелудочной железы от этапа PanIN до PDAC [43,44]. Оба исследования обнаружили, что ваготомия усиливала воспаление поджелудочной железы и стимуляцию макрофагов, ассоциированных с опухолью ТАМ , двух взаимосвязанных, хорошо известных протуморогенных факторов [39,45,46]. Это предполагает изменения в составе TME, которые мы подробно обсудим ниже.

Результаты исследования показали, что, в отличие от ваготомии при раке поджелудочной железы, пересечение блуждающего нерва при раке желудка оказывает противоопухолевое действие [3]. Секреторный эпителий желудка хорошо инервирован холинергическими нервными волокнами, происходящими из ганглиев, находящихся в стенке желудка Мейснерово сплетение , которые в свою очередь регулируются блуждающими нервами [37]. При использовании нескольких различных трансгенных аутохтонных мышиных моделей рака желудка было обнаружено, что парасимпатическая денервация путем ваготомии с пилоропластикой или путем инъекции в желудок ботулотоксина препятствовала прогрессированию от преднеопластической стадии до аденокарциномы, а при выполнении на более поздних стадиях заболевания профилактировала прогрессирование заболевания и повышала выживаемость у мышей [3].

Кроме того, было обнаружено, что денервация путем химического разрушения интрамурального сплетения ингибирует рост опухоли в автохтонной модели рака желудка, вызванной канцерогеном [48]. Модуляция нейротрансмиттеров и родственных рецепторов опухоли Точно так же, как было установлено, что денервация оказывает ингибирующее влияние на инициацию и прогрессирование опухоли, предполагается, что увеличение нервных импульсов способствует прогрессированию опухоли. Гистологические исследования показали, что постоянная электрическая стимуляция верхнего шейного ганглия, который обеспечивает адренергическую иннервацию слюнных желез, приводит к железистой гиперплазии [49,50].

В недавнем исследовании авторы использовали генную инженерию для индукции экспрессии натриевых каналов длительного действия в адренергических нервах опухоли. Экспрессия этих каналов повышала активность адренергических нервов и уровни нейротрансмиттера норадреналина внутри опухоли, что приводило к ускоренному росту ортотопических и канцероген-индуцированных опухолей молочной железы у мышей [27]. Хронический стресс связан с повышенным уровнем заболеваемости раком и худшим клиническим прогнозом [51], также он вызывает повышение уровня циркулирующих и внутриопухолевых катехоламинов, особенно норадреналина [2, 53, 54].

Доклинические исследования злокачественных новообразований показали, что повышенная адренергическая активность вследствие стресса способствует развитию различных видов рака, включая рак яичников, предстательной, молочной и поджелудочной желез [18, 53—55]. Надпочечники в частности, мозговое вещество надпочечников можно отнести к симпатическими ганглиями рис. И хотя адреналэктомия у больных раком мышей, не испытывающих стресс, не влияет на рост опухоли или прогрессирование рака [27], билатеральное удаление надпочечников у мышей с хроническим стрессом снижает скорость прогрессии опухоли в модели трансгенного аутохтонного рака поджелудочной железы [4].

Эти данные свидетельствуют о том, что катехоламины, выделяемые надпочечниками, играют роль в инициации рака. Но необходимы дальнейшие исследования для оценки их роли в прогрессировании рака и метастазировании. Подобные результаты были получены в исследованиях на ортотопических мышиных моделях метастатического рака молочной железы [57, 58].

Было также обнаружено, что повышенная адренергическая активность способствует прогрессированию заболевания поджелудочной железы от пренеопластической стадии PanIN до аденокарциномы на моделях рака поджелудочной железы у трансгенных мышей [4]. Аналогичным образом, длительная терапия изопреналином ускоряла прогрессирование заболевания [4,18]. Также было показано, что повышенная парасимпатическая активность оказывает протуморогенное действие.

Рак желудка усиливает экспрессию мускаринового ацетилхолинового рецептора 3 M3-рецептора [3]. В трансгенных и канцерогенных моделях рака желудка генетическая делеция или фармакологическое ингибирование M3-рецепторов в эпителиальных клеток желудка замедляли рост и прогрессирование опухоли [3, 60]. На трансгенных и ортотопических ксенотрансплантатных моделях рака предстательной железы стимуляция M1-рецепторов карбахолом стимулировала метастазирование в лимфатические узлы, тогда как фармакологическое ингибирование или генетическая делеция M1-рецепторов предотвращали процесс метастазирования [5].

Как уже упоминалось выше, при раке поджелудочной железы парасимпатическая и чувствительная денервация путем пересечения блуждающего нерва ускоряет прогрессирование рака [43,44]. Кроме того, стимуляция холинергической передачи сигналов с помощью неселективного мускаринового агониста бетанхола ингибирует прогрессирование рака поджелудочной железы в трансгенных и ортотопических ксенотрансплантных моделях, а генетическая делеция M1-рецепторов стимулирует прогрессирование опухоли [44]. Подобная ингибирующая роль холинергических нервов была недавно продемонстрирована как на ксенотрансплантатах человека, так и на моделях рака молочной железы у трансгенных мышей [27].

При внутриопухолевой инъекции аденоассоциированного вирусного вектора для экспрессии натриевых каналов в опухолевых холинергических нервах активность этих нервов существенно повышалась. Рост опухоли при этом замедлялся. Поскольку молочная железа является производным кожи, характер её иннервации подобен иннервации кожи, имеющей чувствительные и симпатические волокна, но не имеющей парасимпатической иннервации [61—63].

При опухолях молочной железы, возможно, происходит холинергическая дифференцировка адренергических нервов, как это наблюдалось в потовых железах кожи [64]. Было обнаружено, что рецидив рака молочной железы положительно коррелировал с плотностью адренергических нервов в опухоли и обратно коррелировал с плотностью холинергических нервов в исходном образце опухоли [27]. Суммируя эти результаты, исследователи предполагают, что, хотя адренергические и сенсорные импульсы оказывают противоопухолевый эффект, холинергические импульсы проявляют ткане-зависимые эффекты [14].

Молекулярные механизмы, лежащие в основе эффектов парасимпатических импульсов, не совсем понятны. Этот пробел отчасти связан с отсутствием возможности специфического нацеливания на парасимпатические нервы Таблица 1. Однако селективная делеция мускариновых рецепторов, как это было показано на мышиной модели рака желудка [60], поможет выявить вклад опухолевых эпителиальных клеток по сравнению со стромальными в передачу холинергических импульсов в ТМЕ.

Иннервация гематологических злокачественных новообразований и опухолей ЦНС В дополнение к регуляции солидных опухолей вне ЦНС, которые в основном образуются из эпителиальных клеток, нервы играют роль в патогенезе других типов злокачественных новообразований. Гематопоэтические стволовые ГСК и прогениторные клетки, из которых возникают онкологические заболевания крови, регулируются микроокружением, известным как ниши, которые иннервируются адренергическими нервами [66—68]. Во время нормального старения происходит снижение плотности адренергических нервных волокон в костном мозге, которое изменяет нишу и приводит к снижению функции ГСК [67].

В мышиных моделях острого миелоидного лейкоза ОМЛ потеря адренергических нервов способствует озлокачествлению [69]. В то время как адренергические сигналы в TME эпителиальных опухолей способствуют росту и прогрессированию опухоли, эти же сигналы в нише костного мозга защищают от аберрантной пролиферации и экспансии ГСК. Подобная связь между нервами и развитием онкологического заболевания наблюдалась в первичных и метастатических опухолях ЦНС.

В отличие от периферической, ЦНС обладает чрезвычайно высокой плотностью нейронов, они составляют примерно половину всех клеток головного мозга [73]. Нейроны связаны друг с другом посредством синаптической передачи. Несколько недавних исследований показали, что глиомы опухоли головного мозга, происходящие из глиальных клеток также могут образовывать сеть возбуждающих глутаматергических синапсов в головном мозге, стимулируя рост опухоли [73, 74].

Аналогичным образом, недавнее исследование показало, что метастазы рака молочной железы в мозге также образуют возбуждающие глутаматергические синапсы, стимулирующие рост опухоли через экспрессируемые ею метаботропные глутаматные рецепторы, известные как N-метил-d-аспартатные рецепторы NMDAR [75]. Экспрессированные опухолью NMDAR также связаны с агрессивностью нескольких новообразований, локализованных вне ЦНС, включая рак поджелудочной железы и яичников [76]. Было показано, что опухоли поджелудочной железы также вырабатывают глутамат, который используется для аутокринной регуляции [76, 77].

Учитывая эти данные, можно предположить, что вегетативная адренергическая, холинергическая и чувствительная передача сигналов влияет на эпителиальные опухоли, тогда как глутаматергическая передача сигналов в ЦНС регулирует первичные и метастатические опухоли в головном мозге. Рисунок 2 Адаптировано из Ali H. Zahalka, et al, 2020 [14].

Реактивация нервно-опосредованных путей роста и регенерации в опухоли. Фаза нервной стимуляции части a — c. Связывание нейротрофина с его родственным рецептором на нервах приводит к образованию импульса, который ретроградно распространяется к соме, влияя на экспрессию генов и рост аксонов.

Нервно-опосредованная регуляция фазы роста части d—f. Симпатические нервы способствуют образованию сосудистой сети. Аналогично, в опухоли симпатические нервы способствуют образованию сосудов, кровоснабжающих растущую опухоль, а парасимпатические нервы подают сигналы опухолевым клеткам к митозу и миграции, что, в свою очередь, приводит к увеличению роста и образованию микрометастазов.

Реактивация нервно-опосредованных путей Чтобы лучше понять механизмы, с помощью которых нервы взаимодействуют с ТМЕ и влияют на опухоль, нужно получить представление о влиянии нервов на развитие и регенерацию Рис. Во время своего развития железы и эпителиальные органы подвергаются процессу, известному как лобуляция. Было показано, что этот процесс сильно зависит от развития и роста нервов [78—83] Рис.

В качестве модели для исследования эмбрионального морфогенеза поднижнечелюстная слюнная железа изучена лучше всего. Это произошло благодаря возможности культивировать ее ex vivo.. Как и многие железы, поднижнечелюстная слюнная железа максимизирует пространство и площадь поверхности благодаря ветвящимся протокам и ацинусам, чтобы произвести необходимый объем секрета [84].

Концевые эпителиальные утолщения и протоки секретируют нейротурин, который вызывает однонаправленный рост аксонов из парасимпатического субмандибулярного ганглия [78]. Эти парасимпатические нервы, в свою очередь, высвобождают ацетилхолин, который передает сигналы через мускариновые рецепторы в SRY-box 2 SOX2 , вызывая разветвление и созревание ацинусов, и высвобождает вазоинтестинальный пептид VIP , который стимулирует тубулогенез [78—80,86] Рис. Адренергические нервы также играют важную роль в развитии желез.

В позднем пренатальном периоде адренергические нервы начинают иннервировать слюнные железы, способствуя созреванию железистых ацинусов и формированию сосудистой сети [50,81] Рис. Эта иннервация необходима для органогенеза. Исследования показывают, что симпатэктомия или генетическая делеция основного адренергического нейротрофина NGF ингибирует образование желез [87,88].

NGF играет решающую роль в инициации и дальнейшей иннервации железы. Однако при завершении органогенеза уровни NGF падают, и аксоногенез, соответственно, снижается [89]. Синтезируемый железой NGF, связываясь с родственным рецептором TRKA на нейрональной пресинаптической мембране, влияет на экспрессию генов и аксоногенез [90, 91] Рис.

В эмбриональной поджелудочной железе начало адренергической иннервации ассоциировано с фазой быстрого роста и созревания железы, а генетическая делеция NGF или нейрон-специфическая делеция TRKA приводит к неполной адренергической иннервации поджелудочной железы и, как следствие, нарушению её структуры, а симпатэктомия — к фенокопии [82,88,92]. Помимо вклада в органогенез, нервы также необходимы для формирования и роста конечностей. У развивающегося эмбриона один из самых высоких уровней NGF обнаруживается в зачатке конечности, в недифференцированной мезенхиме, примыкающей к апикальному эктодермальному гребню тонкий эпителиальный слой, необходимый для правильного формирования конечности [89].

До дифференцировки и формирования конечности в мезенхиме её зачатка появляются чувствительные нервы [93], и наблюдается конденсация мезенхимы начальный этап дифференцировки структуры конечности в тесной связи с разветвлением и ростом нервов [93]. Подобная роль нервов наблюдается при регенерации конечностей Рис. У саламандр регенерация структур конечностей дистальнее ампутации зависит от наличия нервов, так как денервация слоев проксимальнее места ампутации препятствует восстановлению [95].

Эти нервы передают сигналы вышележащим эпителиальным и мезенхимальным клеткам бластеме , которые обуславливают клеточную миграцию и контролируют пролиферацию клеток [96] Рис. Нервы важны не только для формирования кровеносных сосудов во время органогенеза [97,98], но и для их восстановления в процессе регенерации [99]. Этот феномен формирования сосудов и эпителия был продемонстрирован на Xenopus laevis гладкая шпорцевая лягушка.

После ампутации передней конечности и последующего хирургического перенаправления иннервации с задней конечности, в результате наблюдалась гипериннервация и ускоренная регенерация в зоне ампутации [100]. В данном случае влияние нервов на регенерацию реализуется через комбинацию эффектов от действия нейротрансмиттеров и факторов роста, таких как специфичный для саламандры секретируемый белок nAG , который не имеет функционально сходного ортолога у млекопитающих [101]. У млекопитающих включая людей происходит нервно-зависимая регенерация кончика пальца [102], это связано с сигнальным путем WNT Рис.

Делеция WNT в эпителиальных клетках кончика пальца снижала экспрессию нейротрофинов и ингибировала рост аксонов и регенерацию у мышей [103]. Зависимость регенерации аксонов от WNT является общим путем для органогенеза во время эмбрионального развития [103—105]. Существуют также другие состояния, при которых нервы поддерживают регенерацию.

Во время инициации и на ранних стадиях прогрессирования опухоль реактивирует нервно-зависимые пути, сходные с теми, что задействованы для обеспечения роста Рис. Как уже обсуждалось в предыдущем разделе, плотность нервов увеличивается более чем в два раза во время предраковой стадии развития опухоли. Это подобно тому, что наблюдается при формировании желез во время органогенеза и формирования бластемы в процессе регенерации.

При этом увеличение числа нервов сопровождается увеличением образования нейротрофинов [110] Рис. В этом исследовании уровни нейротрофинов продолжали расти по мере того, как заболевание прогрессировало до агрессивной аденокарциномы, превышая в 6 раз уровни в сопоставимых по возрасту контрольных группах. Кроме того, было обнаружено, что у мышей с протоковой аденокарциномой поджелудочной железы имеется десятикратное повышение плотности нервов по сравнению с сопоставимой по возрасту контрольной группой одна треть этих нервов является адренергической [4].

Также в исследовании было обнаружено повышение уровня Ngf в эпителиальном компартменте опухоли поджелудочной железы. Когда авторы селективно повысили экспрессию NGF в эпителии поджелудочной железы с использованием трансгенной Ngf-knock-in модели, наблюдалось увеличение плотности адренергических нервов. И наоборот, снижение экспрессии NGF генетическим путем с использованием небольшой интерферирующей РНК siRNA или путем блокады антителами NGF ингибирует прогрессирование рака поджелудочной железы и метастазирование [112,113].

В отличие от экспрессии NGF в эпителии протоковой аденокарциномы мыши, уровни нейротрофинов в образцах полученных из опухоли человека были повышены в стромальном компартменте, а уровни их родственных рецепторов были повышены в эпителиальном компартменте [4,114]. Поэтому необходимы дальнейшие исследования, чтобы выяснить место образования нейротрофина, способствуещего равитию рака. Повышенная экспрессия нейротрофина ассоциирована с плохим клиническим исходом при различных типах рака.

В образцах рака простаты человека повышенная экспрессия pro-NGF — предшественника белка NGF — связана с более агрессивным заболеванием, и наибольшее количество NGF и BDNF было обнаружено в стромальном компартменте этих опухолей [115,116]. Аналогично, повышенная экспрессия NGF была обнаружена в тканях рака молочной железы человека, а повышенные уровни BDNF были обнаружены в опухолях яичников человека и были связаны с более высокой плотностью нервов и повышенной смертностью [117,118]. Сверхэкспрессия NGF в эпителиальных клетках желудка увеличивала иннервацию его слизистой оболочки и индуцировала развитие аденокарциномы желудка у мышей дикого типа [60].

Было также показано, что сигнальный путь WNT является ключевым нейротрофическим фактором стимуляции нервов [3,103]. В клинических образцах рака желудка повышенные уровни WNT коррелировали как с большей плотностью нервов в опухоли, так и стадией опухоли [3]. А денервация желудка на мышиной модели рака желудка снижала уровни WNT и рост опухоли.

В органогенезе и регенерации нервы выполняют несколько функций, в том числе стимулируют пролиферацию эпителия, миграцию и формирование стромы. Парасимпатические нервы регулируют экспансию ацинарных клеток через передачу сигналов M1R к SOX2 [80]. Некоторые виды рака могут взаимодействовать с нервами для активации сходных путей Рис.

Рак предстательной железы происходит из ацинарных эпителиальных клеток. Недавние исследования показали, что усиление парасимпатических сигналов способствует метастазированию рака предстательной железы. Кроме того, опухоли предстательной железы мыши и человека демонстрируют повышенную экспрессию SOX2 в раковых клетках [119].

Другие доказательства того, что парасимпатические нервы регулируют раковые стволовые клетки РСК в опухолях железистого происхождения, получены в трансгенных мышиных моделях рака. Например, холинергические нервы иннервируют стволовые клетки желудка, экспрессирующие фактор транскрипции MIST1 также известный как bHLHa15 , а условная делеция Chrm3 кодирующая M1R в этих клетках ингибирует рост опухоли желудка in vivo [60]. Поскольку парасимпатические нервы оказывают антагонистическое действие в мышиных моделях рака поджелудочной железы то есть они подавляют рост опухоли , введение агониста мускариновых рецепторов бетанхола снижает количество РСК поджелудочной железы [44].

Необходимы дальнейшие исследования, изучающие иннервацию РСК в различных опухолях, чтобы определить, участвует ли адренергическая иннервация непосредственно в экспансии РСК, а также для определения характеристики рецепторов вегетативных нервов, экспрессируемых РСК. Формирование иннервации зависит от сочетания нейрональной миграции и аксоногенеза. Недавние исследования обнаружили увеличение количества клеток, экспрессирующих даблкортин маркер, связанный с нейрональными предшественниками, а также с конусом роста аксонов [120,121] в трансгенных опухолях предстательной железы мыши [122].

Это открытие предполагает, что нейронные предшественники могут перемещаться по кровотоку от мозга к предстательной железе. Происходит ли подобный процесс при других типах опухолей или в раковых опухолях человека, требуется изучить в дальнейшем. Однако это наблюдение вызывает множество вопросов, например, как нейронные предшественники преодолевают гематоэнцефалический барьер, каковы сигнальные пути от мозга к опухоли простаты и дифференцируются ли эти предшественники в полноценные функциональные вегетативные нервы.

Поскольку клетки рака предстательной железы также могут экспрессировать даблкортин [123], потребуются углубленные исследования для определения происхождения новообразованных аксонов в опухолях. Нервная регуляция TME Последние достижения в области генной инженерии привели к большему пониманию молекулярных основ нервной регуляции опухоли. Эксперименты in vitro показали, что нейротрансмиттеры передают сигналы непосредственно опухолевым клеткам, способствуя пролиферации, выживанию и миграции клеток, как было рассмотрено ранее [124].

Следует отметить, что прямая иннервация эпителиального компартмента то есть клеток, из которых происходят солидные опухоли действительно может играть роль в возникновении и прогрессировании опухолей, как это было показано для рака желудка [60]. В некоторых органах, таких как простата, эпителиальные клетки гистологически отделены от нервов барьером из гладких мышц, тогда как в других, например, в слюнных железах, эпителиальные клетки подвергаются прямой иннервации. Таким образом, специфические для эпителиальных клеток нокауты генов, кодирующих вегетативные и сенсорные рецепторы Adrb2, Adrb3, Chrm1 и Chrm3 и ген, кодирующий рецептор субстанции P Nk1r, также известный как Tacr1 в моделях автохтонного рака у мышей, позволяют получить представление о вкладе эпителиального компартмента в нервно-опосредованную регуляцию опухоли.

Гистологические исследования показывают, что нервы проходят через стромальный компартмент и непосредственно иннервируют структуры стромы [40,125,126]. Работы на животных in vivo свидетельствуют о взаимодействии в TME между нервами, стромой и эпителиальным компартментом. Например, недавнее исследование показало, что адренергические нервы косвенно регулируют пролиферацию опухолевых клеток, стимулируя ангиогенез и, таким образом, доступность питательных веществ для опухоли [2].

Далее обсудим влияние нервов на отдельные компоненты TME Рис. Zahalka, et al, 2020 [14] Нервная регуляция опухолевого микроокружения Нервы взаимодействуют со множеством стромальных и злокачественных эпителиальных компонентов, способствуя росту и распространению опухоли. Опухоль создает вокруг себя иммуносупрессивное микроокружение.

Передача сигналов от адренергических нервов стимулирует секрецию интерлейкина-8 IL-8 , которые в свою очередь привлекают опухоль-ассоциированные макрофаги ТАМ , способствующие ангиогенезу и дальнейшей иммуносупрессии. Ангиогенез, ключевой компонент развития опухоли, напрямую регулируется нервами. Как упоминалось ранее, парасимпатическая передача импульсов через холинергические рецепторы, экспрессируемые опухолевыми клетками, способствует миграции опухолевых клеток и образованию микрометастазов.

Ангиогенез и лимфангиогенез Ангиогенез необходим для роста опухоли [127]. В стромальном компоненте тканей адренергические нервы тесно связаны с сосудистой сетью главным образом, с артериолами и капиллярами [128,129]. Недавно было обнаружено, что адренергические нервы регулируют инициацию и ангиогенез на ранних стадиях рака простаты с помощью механизма, называемого «ангиометаболический переключатель» angiometabolic switch [2] Рис.

Эндотелиальные клетки обычно регулируются гликолитической метаболической программой при направленной миграции клеток, необходимой для ангиогенеза при нормальном развитии и при раке [130,131]. В TME мышиной модели рака предстательной железы было обнаружено, что эндотелиальные клетки демонстрируют более высокую экспрессию Adrb2, а симпатэктомия или условная делеция Adrb2 в эндотелиальных клетках ингибирует ангиогенез путем смещения метаболизма эндотелиальных клеток от гликолиза к окислительному фосфорилированию за счет активации регуляции цитохром С оксидазы фактора сборки 6 Coa6 [2]. Подобно сосудистой сети, лимфатическая система высоко иннервирована адренергическими нервами [132,133].

В ортотопических и трансгенных моделях рака молочной железы лимфангиогенез и ремоделирование лимфатической системы зависели от адренергической передачи сигналов через рецептор Adrb2 на лимфатическом эндотелии, что способствовало метастазированию опухоли [57]. Было показано, что симпатическая денервация уменьшает образование лимфатических сосудов, что коррелирует с уменьшением агрессивности рака [17]. Иммунитет и воспаление Внутри TME вегетативные нервные волокна иннервируют иммунную сеть.

Вырабатываемый T-клетками ацетилхолин, в свою очередь, ингибирует продукцию фактора некроза опухоли TNF в макрофагах, экспрессирующих никотиновый ацетилхолиновый рецептор [135]. Хотя эта нейроиммунная сеть, называемая «воспалительным рефлексом», отвечает за иммуносупрессию в условиях стресса, вегетативная иннервация также напрямую влияет на привлечение и стимуляцию иммунных клеток в TME. Инфильтрация опухоли лимфоцитами и их активация являются ключевыми компонентами противоопухолевого иммунного ответа [136].

Повышенный уровень стресса связан с повышенной активацией лимфоцитов посредством производства провоспалительных цитокинов, таких как интерлейкин-6 IL-6 [137]. Опухоли яичников, резецированные у пациенток, находящихся в состоянии стресса, по сравнению с опухолями яичников, резецированных у пациенток, не испытывающих стресс, но сопоставимых по возрасту и стадии заболевания, имеют повышенный внутриопухолевый уровень норадреналина и IL-6 [138]. Тем не менее, в тканях с высокой степенью иннервации, таких как поджелудочная железа и предстательная железа, были обнаружены низкие уровни T-хелперов 1 TH1 [136, 140—142].

Адренергические нервы вносят свой вклад в это иммуносупрессивное окружение несколькими способами Рис. Лимфатическая система, которая отвечает за транспортировку лимфоцитов, высоко иннервирована адренергическими нервами. На ортотопической мышиной модели рака молочной железы нокаут Adrb2 в MDSC замедляет рост опухоли, снижает экспрессию PDL1 и уровни иммуносупрессивных цитокинов в сыворотке крови [146].

Эти наблюдения, а также тот факт, что опухоли с хорошим ответом на иммунотерапию, по-видимому, обильно инфильтрированы TH1 клетками [136], предполагают, что денервация или прекращение адренергических сигналов может обеспечить новые подходы для улучшения иммунотерапевтического ответа в высокоиннервированных опухолях [147]. TNF является основным хемоаттрактантов для клеток врожденного иммунитета, таких как макрофаги. Стимуляция блуждающего нерва активирует постсинаптические адренергические нервы в чревном ганглии, который иннервирует селезенку, ингибируя высвобождение TNF из макрофагов.

А ваготомия устраняет эту иммуносупрессию, повышая тем самым системные уровни TNF [134,148]. Ацетилхолин, в свою очередь, стимулирует никотиновые АХ-рецепторы на макрофагах селезенки, ингибируя высвобождение TNF [148]. В трансгенных моделях рака поджелудочной железы ваготомия существенно увеличивала уровни TNF, приводя к увеличению количества TAM [43,44].

В ортотопической модели рака молочной железы увеличение адренергической передачи сигналов в условиях стресса увеличивало количество внутриопухолевых TAM [58]. Аналогичным образом, при раке предстательной и поджелудочной желез нервно-зависимое увеличение количества ТАМ было ассоциировано с прогрессированием опухоли. Тогда как снижение числа макрофагов ингибировало рост опухоли [19,43,44,46,149].

Суммируя эти данные, можно предположить, что нейроиммунная связь является важным регуляторным компонентом TME, где отдельные ветви вегетативной нервной системы действуют противоположно друг другу, обеспечивая тем самым баланс, который нарушается при возникновении рака. Фибробласты и внеклеточный матрикс Изменения в 3D-структуре и составе TME значительно влияют на прогрессирование опухоли и метастазирование Рис. Например, во многих опухолях плотный внеклеточный матрикс ВКМ действует как физический и химический барьер для инфильтрации иммунных клеток, создавая привилегированную в иммунном отношении среду [150].

В то же время, изменения в составе ВКМ по отношению к среде, богатой коллагеном I типа, приводят к тому, что она действует как ангиогенный суперполимер, способствуя ангио- и нейрогенезу [151—154]. Кроме того, в то время как повышенная плотность ВКМ помогает предотвратить иммунный ответ на ранних стадиях развития опухоли, деградация ВКМ матриксными металлопротеазами MMP способстет миграции и распространению опухолевых клеток метастазов на поздних стадиях развития заболевания [155].

Ученые нашли новый способ бороться с раком через нервную систему Вероятно, нейротерапия рака может стать новым методом лечения в дополнение к химиотерапии, хирургии, иммунотерапии. Об этом пишет РИА Новости , ссылаясь на последние исследования ученых. Они поняли, что раковые клетки могут подчинять себе соединительные ткани, кровеносные сосуды и даже нервную систему. А проведение экспериментов в конце 1990-х годов доказало, что нейроны играют более активную роль в росте и развитии опухолей.

Некоторые ученые провели ряд испытаний и исследований, они пришли к выводу, что нервная система в дальнейшем поможет бороться с раком Ученые отказались видеть злокачественные опухоли как просто набор сломанных клеток, и решили исследовать их более глубокую структуру и функции.

Оказалось, что рак способен управлять соединительной тканью, кровеносными сосудами и нервной системой. Взаимосвязь между раком и нервами была известна уже более двух веков, но роль нервов в росте опухолей рассматривалась лишь в контексте передачи болевых сигналов. Однако новые эксперименты показали, что нейроны играют активную роль в развитии рака.

C47 Злокачественное новообразование периферических нервов и вегетативной нервной системы, МКБ-10

Единственным способом защиты является вакцинация. Вирусы гепатита В и С, передающиеся через кровь, часто приводят к раку печени. Герпес восьмого типа может стать причиной развития опухолей любого из органов, лимфы и кожи. Аналогичные проблемы свойственны для больных СПИДом. Эпштейн-Барр есть в организме многих людей, но в острую форму он переходит только при ослаблении иммунитета.

В начале лечения можно также предотвратить симптомы, которые могут стать более проблематичными.

Важно сразу сообщить своему врачу, если у вас возникли симптомы, которые могут указывать на нарушение нервной системы.

Я одела его и на руках отнесла, он скатился и впервые за долгое время расхохотался. Я поднимала его на горку раз за разом, а он смеялся от переполнявшей его радости. Я была без сил, но продолжала его катать с горки. Сейчас мы снова в безвыходной ситуации, нет денег, сил, иногда нападает такое отчаяние, что руки опускаются. Но я не имею право. Без сил, денег, но с огромной верой я продолжаю просить, умолять каждого помочь мне спасти сына. Я падаю, встаю и иду снова просить Вас, самые добрые люди на свете, о помощи.

Вклад микробиома в воспалительный ответ был дополнительно продемонстрирован тем фактом, что у свободных от микробов мышей сниженный воспалительный ответ и более низкий уровень провоспалительных цитокинов [79]. Другая проопухолевая реакция инициируется бактериями Fusobacterium nucleatum. Эта бактерия ослабляет противоопухолевый иммунный ответ. Это достигается за счет использования белка адгезии Fap2 таблица 1 для подавления способности цитотоксических иммунных клеток убивать опухоли. Он также способен стимулировать Т-клеточные иммунные рецепторы, иммуноглобулины и иммунорецепторные домены ингибирующих мотивов на основе тирозина TIGIT , которые действуют как иммунный ингибитор [80]. Повышенный уровень F. Рисунок 4. Дифференцировка Т-клеток в ответ на воспалительные цитокины. На приведенной выше схеме показаны сигналы от микробиома, приводящие к дифференцировке Т-клеток в определенные субпопуляции.

Секреция цитокинов IL-12 и IL-14 приводит к тому, что дендритные клетки инициируют развитие клеток Th1 и Th2 соответственно. Клетки Th1 жизненно важны для иммунной системы, чтобы обеспечить эффективный ответ против опухолевых клеток. Эти клетки секретируют провоспалительные цитокины. Противораковые эффекты, инициируемые иммунным ответом с участием микробиоты, включают реакцию, инициируемую кишечными бактериями рода Bifidobacterium. Эти бактерии повышают способность цитотоксических Т-клеток убивать опухоли, помогая функционированию дендритных клеток [82]. Эффективность этих методов лечения зависит от присутствия бактерий Bacteroides thetaiotamicron и B. Иммунный ответ, инициируемый присутствием полисахаридов, секретируемых B. Это говорит о том, что иммунная активация, которой способствует присутствие этих бактерий, также инициирует противоопухолевый ответ, который усиливается ингибированием CTLA4 [83]. Бактериальные метаболиты и иммунный ответ Одним из механизмов, с помощью которых бактерии могут влиять на иммунный ответ и либо способствовать, либо подавлять развитие рака, является выработка и секреция вторичных метаболитов.

Попав в кишечник, они могут попасть в кровеносную или лимфатическую систему и циркулировать по всему организму [84]. Некоторые из этих метаболитов, выделяемых бактериями, являются нейротрансмиттерами и нейромодуляторами, связанными с ЦНС [85]. Другими являются ранее упомянутые SCFAs [86]. SCFAs снижают уровни провоспалительных цитокинов, которые высвобождаются в рамках иммунного ответа, воздействуя на популяции клеток Th1. Наличие высоких концентраций бактерий Bacteroides fragilis приводит к увеличению образования Treg, секретирующих IL-10 [87]. Длинноцепочечные жирные кислоты - еще один тип метаболита, выделяемый микробами. Они усиливают провоспалительный ответ за счет увеличения скорости дифференцировки Т-клеток с образованием увеличенного количества клеток Th1 и Th17. Это наблюдалось в нейронах мышей. BDNF важен для образования новой нервной ткани, которая способствует развитию и прогрессированию рака, поскольку новые нервные волокна способствуют расширению и миграции опухолей [91].

Это результат подавления воспалительной реакции рис. Путь STAT3 может быть заблокирован путем блокирования передачи сигналов IL-17 , что приводит к уменьшению воспаления и онкогенеза [94]. Рисунок 5. BDNF важен для образования новой нервной ткани, которая способствует развитию и прогрессированию рака. Бактерии из рода Helicobacter играют важную роль в развитии рака простаты и толстой кишки. Многие уникальные виды Helicobacter были изолированы исключительно от пациентов с раком желудочно-кишечного тракта [46]. Было обнаружено, что мыши, инфицированные бактериями Helicobacter hepaticus, чаще страдают от интраэпителиальной неоплазии предстательной железы и микроинвазивных поражений аденокарциномы без сопутствующего наличия ВЗК или крупных аденоматозных полипов в кишечнике. Когда клетки лимфоидных узлов были извлечены из этих мышей и введены здоровым мышам, у большинства этих мышей развились новообразования. Предполагалось, что секреция тучных клеток способствует канцерогенезу [95].

Иммунные клетки в ЦНС Иммунные клетки в головном мозге не только защищают его от инфекций и травм, но также помогают в таких процессах, как нейронное ремоделирование и пластичность. Из-за того, что центральная нервная система частично отделена от остального тела гематоэнцефалическим барьером ГЭБ , она должна иметь свои собственные иммунные клетки. Эти клетки участвуют как в адаптивной, так и в врожденной иммунной системе [96]. Масляная кислота и пропионовая кислота , продуцируемые микробами, о которых говорилось ранее, могут пересекать ГЭБ, переноситься через кровь и также могут регулировать дифференцировку Т-клеток в других участках ткани. Эта активация сопровождалась повышенной экспрессией фактора транскрипции Foxp3 за счет изменения активности промотора foxp3 [98]. Также было показано, что у мышей, свободных от микробов, есть микроглия с аномальными морфологическими характеристиками. Эти микроглии также имеют измененную экспрессию генов [99]. Микробные метаболиты способны активировать астроциты из состояния покоя. Они достигают этого, воздействуя на арилуглеводородные рецепторы, участвующие в передаче сигналов IFN-I , тем самым ограничивая набор и активность нейротоксических иммунных клеток для инициации противовоспалительной активности [100].

Эти рецепторы обычно обнаруживаются в большом количестве только на поверхности незрелых клеток микроглии. По мере созревания микроглии экспрессия этих рецепторов снижается. Активация рецептора GPR43 на клетках врожденного иммунитета активирует воспалительный ответ. Такие же наблюдения были отмечены у мышей, получавших антибиотики. Как у мышей, свободных от микробов, так и у мышей, леченных антибиотиками, количество микроглии остается высоким [101]. Микроглия от свободных от микробов мышей также демонстрирует повышенную экспрессию множества генов, эта повышенная экспрессия генов типична для более молодой микроглии [102]. У безмикробных мышей обнаруживаются дефекты в активности микроглии [100]. Пути передачи сигналов интерферона I типа Интерферон I типа IFN-I представляет собой цитокин, индуцируемый патоген-ассоциированными молекулярными структурами PAMPs , который заставляет иммунную систему распознавать различные вирусные, бактериальные и опухолевые клетки. IFN-1 также активен в ЦНС и, как известно, играет роль в защите от рака мозга на животных моделях [103], обзор приведен в [104].

IFN-I связан с созреванием дендритных клеток и цитотоксических Т-клеток , которые участвуют в иммунном ответе против раковых клеток [105]. IFN-I также проявляет противораковую активность благодаря своей способности регулировать рост и индуцировать апоптоз при гематологическом раке [106]. Экспрессия IFN-1 может влиять на микробиом или находиться под его влиянием [107]. TLR3 может быть активирован увеличением количества молочнокислых бактерий в кишечнике. Нейротрансмиттеры в раке и в микробиоме Рецепторы нейротрансмиттеров обычно экспрессируются на поверхности опухолевых клеток. К ним относятся рецепторы, такие как рецепторы, связанные с G-белком GPCR , также известные как серпентиновые рецепторы. Как только нейротрансмиттеры связываются с этими рецепторами, они могут изменять поведение и характеристики опухолевых клеток. Это может привести к увеличению пролиферации, миграции и более агрессивной опухоли [109]. Опухоли также могут продуцировать и секретировать нейротрансмиттеры.

Примером этого является то, что клетки рака простаты ведут себя как нейроэндокринные клетки в своей способности секретировать нейротрансмиттеры. Этот ответ усиливается в опухолевых клетках, которые подвергались воздействию терапевтических агентов, и клетки, возможно, сделали это в ответ на эти агенты [110]. Моноаминный нейротрансмиттер, серотонин или 5-гидрокситриптамин 5-HT , способен воздействовать на центральную нервную систему ЦНС , нейроэндокринную систему кишечная нервная система [111, 112] и иммунную систему [113]. Известно, что серотонин взаимодействует с микробиомом и играет роль в развитии и прогрессировании различных видов рака [114]. В противоположность этому, более низкие уровни серотонина могут также способствовать развитию рака толстой кишки, поскольку низкие уровни серотонина сопровождаются повышенными уровнями повреждения ДНК, усилением воспаления и, как следствие, повышенными уровнями развития колоректального рака [115]. Производство большей части серотонина в организме регулируется микробиотой кишечника. Энтерохромаффинные клетки, расположенные в кишечнике, снабжают серотонином слизистую оболочку, просвет и циркулирующие тромбоциты, и эти клетки стимулируются к выработке серотонина под действием спорообразующих бактерий [112]. У самцов мышей, свободных от микробов, также был обнаружен более высокий уровень серотонина в их гиппокампах. Этому предшествует увеличение содержания триптофана в крови самцов крыс, который является предшественником серотонина [116].

Кроме того, серотонин стимулирует пролиферацию при различных видах рака, таких как глиомы где он также играет роль в миграции [117], рак предстательной железы [118], рак мочевого пузыря [119], мелкоклеточный рак легких [120], рак толстой кишки [121], рак молочной железы [122] и гепатоцеллюлярная карцинома [123]. Одним из процессов, на которые влияет серотонин, способствующий развитию и прогрессированию рака, является ангиогенез. Повышенный уровень серотонина приводит к увеличению развития кровеносных сосудов и увеличению размеров кровеносных сосудов [124,125]. Исследования также были сосредоточены на использовании измененных паттернов экспрессии серотонина или серотонинового рецептора [126] в качестве диагностического или прогностического биомаркера при различных видах рака, включая урологический рак [126] и рак толстой кишки [127].

Ученые из России нашли новый способ лечения онкологии через нервную систему

Шансы на выживание зависят от того, можно ли опухоль полностью удалить хирургическим путем, реагирует ли она на традиционную химиотерапию и насколько широко распространился рак. Онкологи из РФ намерены лечить рак при помощи нервной системы. Российские ученые намерены бороться с раком через нервную систему. Российские ученые предложили новый подход к борьбе с раком, сосредоточив внимание на взаимодействии опухолей с нервной системой. развитие нейрофиброматоза 2-го типа (это заболевание, связанное с поломками генов, при котором формируются множественные опухоли – шванномы либо менингеомы в области нервов и нервной системы). Выживаемость зависит от успешного хирургического удаления опухоли, реакции на традиционную химиотерапию и степени распространения рака.

Нервы в раковых опухолях

Многие методы, стимулирующие нервную систему, также могут привести к развитию рака, манипулируя проводящими путями, связанными с признаками рака. Симптомы, которые испытывают люди с опухолями центральной нервной системы, отличаются. Нейропатия на фоне химиотерапии ведет за собой к изменению в организме и проявляющееся рядом специфических симптомов, связанных с повреждением нервной системы. Головная боль, тошнота, нарушение слуха или зрения могут указывать на наличие рака мозга.

Нейробластома и ганглионейробластома центральной нервной системы у взрослых пациентов

Оказалось, что рак способен управлять соединительной тканью, кровеносными сосудами и нервной системой. Например, при полиневропатии основное лечение направлено на регенерацию поврежденных нервных волокон, восстановление миелиновой оболочки, улучшение нервно-мышечной передачи. Опухоли периферической нервной системы (ПНС) — редкая патология. Питание для тканей не исключение, поэтому скрытая роль нервной системы в развитии рака может быть очень значительной. злокачественные опухоли любой локализации (кроме нервной системы) — метастатические опухоли головного и спинного мозга, карциноматоз мозговых оболочек, компрессия и инвазия опухолью или ее метастазами различных структур нервной системы.

Ученые научились лечить рак с помощью вируса

Поражение центральной нервной системы при гематологических опухолях всегда ассоциируется с тяжёлым статусом пациентов. Выживаемость зависит от успешного хирургического удаления опухоли, реакции на традиционную химиотерапию и степени распространения рака. Коллекция включает 26 уникальных штаммов экспериментальных опухолей нервной системы лабораторных животных (анапластическая астроцитома, олигоастроцитома, анапластическая невринома, анапластическая олигодендроглиома, мультифирмная глиобластом, глиома. Поражение центральной нервной системы при гематологических опухолях всегда ассоциируется с тяжёлым статусом пациентов.

Главный онколог «СМ-Клиника» об опухолях спинного мозга

Международный коллектив молекулярных биологов открыл свидетельства того, что клетки нейробластомы, одной из форм рака нервной системы, используют белок CKLF для того, чтобы подавлять иммунитет и. Поэтому когда нервные волокна проникают в рак простаты, образуя связь со здоровыми клетками, опухоль растёт. В 2021 году в Воронежской области заболеваемость опухолями центральной нервной системы составила 107 на 100 тысяч населения. Опухоли центральной и периферической нервной системы человека составляют 0,8-1,2% от общего числа всех опухолевых заболеваний. Главная/ Все клинические рекомендации/Первичные опухоли центральной нервной системы. Главная/ Все клинические рекомендации/Первичные опухоли центральной нервной системы.

Oncobrain — независимый информационный портал об опухолях мозга

Невролог нашел связь между нервным тиком и раком | 360° Российские ученые предложили новый подход к борьбе с раком, сосредоточив внимание на взаимодействии опухолей с нервной системой.
Онколог назвал неочевидные симптомы рака мозга | Радио 1 Как оказалось, у женщин страдающих раком молочной железы, параметры активности головного мозга были практически одинаковыми с аналогичными параметрами у здоровых женщин.

Похожие новости:

Оцените статью
Добавить комментарий