Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом.
Что такое фрактал? Фракталы в природе
Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала.
Открытие первой фрактальной молекулы в природе — математическое чудо
Впервые в природе обнаружена микроскопическая фрактальная структура | | Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. |
Фракталы: бесконечность внутри нас | Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. |
Созерцание великого фрактального подобия | Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал? |
Фрактальные закономерности в природе
Вы, несомненно, заметили приятную спираль их чешуи, за которой прячутся семена. Они плотно закрываются, когда сыро или холодно, а затем раскрываются, когда наступает оптимальная погода для распространения семян по ветру. Опять же, фрактальная конструкция вызвана ускоренным ростом. Это естественный пример логарифмической или равноугольной спирали.
У многолистного алоэ Aloe polyphylla и некоторых видов эхеверии есть веские причины для вздернутых, свернутых листьев: они помогают отводить дождевую воду к сердцевине растения и не дают верхним листьям затенять нижние. В середине 00-х годов один математик выдвинул гипотезу, что спиральный узор как на растениях, так и на отпечатках пальцев возникает по одной и той же причине — для снятия стресса. По его словам, силы, действующие в противоположных направлениях, заставляют кожу и ткани растений прогибаться внутрь по мере роста.
Снежинка могла бы продолжаться так вечно, увеличиваясь до размеров самой Земли, если бы не перестала накапливать влагу и, в конце концов, не растаяла. Самый известный фрактальный узор снежинки известен как снежинка Коха, возникающая из одного равностороннего треугольника, образующего другой, третий и так далее. Это один из самых ранних описанных фракталов.
Это и есть ключевой признак фракталов — самоподобие при изменении масштаба. Принцип построения модели: В основе модели, как и писал раньше, лежит итерация многократное повторение. В случае множества Мандельброта — это решение уравнения. Оно выглядит так: уравнение Множества Мандельброта, где С — комплексное число Для математика выглядит достаточно просто, но есть нюансы. Не будем вдаваться в подробности, попробуем пошагово раскрыть суть построения множества: Чтобы определить, входит ли число в множество Мандельброта, нужно принять Z за ноль О возвести в квадрат и сложить с нашим числом. Полученное число Z — заново подставляем в уравнение и складываем с числом, которое тестируем. Уравнение решается и полученное решение снова подставляется в уравнение.
Уравнение заново решается. Множественное повторение решений одного и того же уравнения. Если при решении мы видим, что значение Z сильно увеличивается стремится к бесконечности , значит изначальное число не подходит.
Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона Richardson effect. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности.
Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла. Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала.
Различные белковые цепи осуществляют несколько разные взаимодействия в разных положениях фрактала. Это послужило основой для формирования треугольника Серпинского с его большими внутренними пустотами, а не регулярной решетки молекул. Приносит ли эта странная сборка что-нибудь полезное? Многие фрактальные структуры, например, в облаках или дельтах рек вверху , создаются случайными процессами и не подчиняются точной математической формуле; русло меньшего размера не совсем соответствует строению большего русла, от которого оно ответвляется. С другой стороны, папоротники внизу слева и цветная капуста романеско являются примерами регулярных фракталов.
Когда команда ученых генетически манипулировала бактерией, чтобы предотвратить сборку ее цитратсинтазы во фрактальные треугольники, клетки росли так же хорошо в различных условиях. Такие случаи могут произойти, когда рассматриваемую конструкцию не так уж сложно построить».
14 Удивительные фракталы, обнаруженные в природе
Фракталы в природе (53 фото). Деревья – один из самых квинтэссенциальных фракталов в природе. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы.
Молния фрактал
Ключом к пониманию фрактального белка было то, что его сборка нарушала это правило симметрии. Различные белковые цепи осуществляют несколько разные взаимодействия в разных положениях фрактала. Это послужило основой для формирования треугольника Серпинского с его большими внутренними пустотами, а не регулярной решетки молекул. Приносит ли эта странная сборка что-нибудь полезное? Многие фрактальные структуры, например, в облаках или дельтах рек вверху , создаются случайными процессами и не подчиняются точной математической формуле; русло меньшего размера не совсем соответствует строению большего русла, от которого оно ответвляется.
С другой стороны, папоротники внизу слева и цветная капуста романеско являются примерами регулярных фракталов. Когда команда ученых генетически манипулировала бактерией, чтобы предотвратить сборку ее цитратсинтазы во фрактальные треугольники, клетки росли так же хорошо в различных условиях.
Получается, что рынок, как минимум, имеет фрактальные свойства.
Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта?
К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи. Опять же, не будем вдаваться в сложные математические вычисления и доказательства. Нас тут интересует, что определенное соотношение частей и сторон множества Мандельброта соответствуют принципам золотого сечения и чисел Фибоначчи.
А это уже совсем другая история... Множество Мандельброта — это удивительный мир фракталов, возможности которого, по большей части, не изучены. Но, безусловно, изучение этого направления — это «окно» в мир новых теорий и концепций.
Самый известный фрактальный узор снежинки известен как снежинка Коха, возникающая из одного равностороннего треугольника, образующего другой, третий и так далее. Это один из самых ранних описанных фракталов. По мере их роста от ствола отходят ветви, и каждая из этих ветвей сама по себе похожа на меньшее дерево, развивающее свои собственные ветви и свои собственные ответвления. Если вы посмотрите на сложное дерево, то заметите повторение Y-образной формы на всем его протяжении. Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние.
Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева. Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь. Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении.
То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде.
Фрактал. 5 вопросов
Фракталы. Чудеса природы. Поиски новых размерностей: solar_activity — LiveJournal | Фракталы часто встречаются в природе. |
Фракталы - Красота Повтора | Сакральная Геометрия | Грани РазУма | Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». |
Откройте свой Мир!
Фрактал | Наука | Fandom | Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! |
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс | Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. |
Фракталы в природе - презентация онлайн | О природе ков Виталий7 (Высоцкий В С.). |
Фрактал | Наука | Fandom | Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал? |
Математика в природе: самые красивые закономерности в окружающем мире | Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. |
Откройте свой Мир!
Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона Richardson effect.
В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла.
Остановимся на комплексных числах. Вы наверняка знаете, что извлекать квадратный корень из отрицательных чисел нельзя — это следует из того, что любое отрицательное число в квадрате является положительным. Логика железная и справедливая, но лишь для действительных чисел. Вот здесь-то и ломается привычная арифметика.
Нас ведь с пятого класса учили, что из отрицательных чисел квадратный корень не извлечь», — скажете вы и будете правы! Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага.
В результате получаются невероятные картины! Приближаясь к любым координатам множества Мандельброта, вы увидите всё новые и новые бесконечные узоры, которые напоминают изначальный вариант. Рассматривать и изучать такие фракталы можно бесконечно. Поэтому при разных значениях C, фрактал Жюлиа можно визуализировать по разному, например так: Изображение: Лев Сергеев для Skillbox Media Стохастические фракталы Если в геометрических и алгебраических фракталах формула постоянна, то в стохастических она меняется — и не один раз. Изменение может проходить как по конкретному закону, так и произвольно, но в обоих случаях это приводит к фантастическому визуальному эффекту! Следующее изображение основано на нескольких фрактальных формулах: Изображение: Лев Сергеев для Skillbox Media С помощью сложных стохастических законов учёные могут воспроизводить структуры объектов живой природы.
Добавляя отклонения на различных итерациях к таким фракталам, как дерево Пифагора, или снежинка Коха, мы можем получить изображение наклонившейся листвы или сгенерировать сколько угодно неповторимых снежинок. Фрактальная графика На принципе самоподобия основано целое направление в компьютерной графике. При таком подходе компьютер хранит не готовый объект, а лишь формулу его отрисовки, что значительно экономит память. Таким образом, появляется возможность рисовать конкретные объекты и абстрактные 3D-модели, описывая лишь часть итогового изображения. Например, можно сгенерировать известный папоротник Барнсли, указав формулу для построения одной ветви, количество итераций и добавив хаотичные изменения на последующих итерациях: Закон, описывающий папоротник Барнсли Изображение: Лев Сергеев для Skillbox Media Изображение, сгенерированное по формуле Барнсли Изображение: Лев Сергеев для Skillbox Media Фракталы в физике Принципы построения фракталов используются в физике, в таких разделах, как гидродинамика, физика плазмы, электродинамика и радиоэлектроника.
Жюлиа — Мандельброт Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру каждый цвет соответствует определенному числу итераций. Данное графическое изображение получило имя «фрактал Мандельброта». Карпентер: искусство, созданное природой Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе фыва , он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил. Решение Карпентера Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм. Первая 3D-визуализация на фрактальном алгоритме Уже через несколько лет Лорен применил свои наработки в масштабном проекте — анимационном ролике Vol Libre, показанном на Siggraph в 1980 году.
Они утверждают, что никогда раньше не наблюдали подобной сборки белков. Сборка белков, как правило, очень симметрична, поскольку белковая цепочка копирует положение своих соседей. В случае с изученным ферментом сборка демонстрирует асимметрию, которая и лежит в основе фрактальной структуры. Историческое развитие фрактального фермента После этого открытия исследователи провели эксперимент, чтобы понять, как и почему фрактальная структура фермента появилась в ходе эволюции. В частности, они попытались проследить ее развитие, чтобы определить, не является ли она результатом эволюционной случайности. Для этого они провели расчеты, чтобы определить последовательность фрактального белка, какой она была миллионы лет назад. Целью было воспроизвести белки биохимически. Результаты эксперимента свидетельствуют о том, что фрактальная структура появилась внезапно в ходе эволюции, после очень небольшого числа мутаций.
Фрактал. 5 вопросов
Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Если посмотреть на фрактал с близкого или дальнего расстояния, можно увидеть, как повторяются одни и те же узоры. Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа». В ней он впервые заговорил о фрактальной природе нашего многомерного мира. В своей книге “Фрактальная геометрия природы” (1982) Бенуа Мандельброт ввел термин фракталы, и создал математику для их описания.