Новости искусственный интеллект дзен

Директор по развитию искусственного интеллекта.

Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»

К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события. В ответ компания разрабатывает методы раннего обнаружения мошеннических действий, увеличивает количество команд, работающих над безопасностью ИИ, и экспериментирует с технологиями удостоверения подлинности цифрового контента, такими как C2PA. Искусственный интеллект должен быть искусственным. Реальный интеллект должен отражать реальные представления человечества о мироздании. Искусственный интеллект проник практически во все сферы привычной нам жизни, в том числе, и в повседневную работу российских компаний. Работая с изображениями, искусственный интеллект «Дипфейк» накладывает один фрагмент поверх другого с поразительной точностью. Треть россиян боится потерять работу из-за искусственного интеллекта, к такому выводу пришли в исследовательской компании BCG после недавнего опроса.

Искусственный интеллект в медицине: как это работает? Реальные примеры

Это набор слайдов с текстами, фото, видео и GIF-изображениями. С осени 2017 года нарративы тестировали медиасервисы, а с января 2018 года формат стал доступен и авторам платформы Дзена [39]. После добавления публичных профилей пользователей в марте 2019 года сервис приобрёл черты социальной сети [40]. Данный логотип использовался платформой в 2021—2022 годах В 2021 году «Дзен» изменил вектор развития: он ориентирован больше на блоги и видеоконтент.

В апреле 2021 года был прекращён обмен трафиком с медиасервисами. Просмотры на многих сервисах резко упали [42]. В августе 2022 года VK объявила о приобретении сервисов «Дзен» и « Дзен.

Новости» [43]. Сделка была закрыта 12 сентября 2022 года, и новостной агрегатор стал частью портала Дзен [44]. Теперь при посещении главной страницы поисковой системы Яндекс , пользователя автоматически переадресовывает на страницу dzen.

В статье не хватает ссылок на источники см. Информация должна быть проверяема , иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок.

Монетизация сервиса происходит благодаря рекламным блокам, встроенным в новостные ленты в России — объявления Яндекс. Директа [38] , и нативной рекламе [19]. В апреле 2019 года в «Дзене» запущен рекламный кабинет, в котором можно запустить таргетированную рекламу на рекламную публикацию [49].

Цензура править В «Дзене» существуют ограничения показов материалов, нарушающих российское законодательство и правила сервиса. Например, могут быть ограничены в показах статьи, в которых присутствуют детальные описания трагических происшествий, шокирующий или откровенный контент, оскорбления и т. В декабре 2018 года по требованию Роскомнадзора канал «МБХ-медиа» был заблокирован [51].

Яндекс поощряет это устремление, предусмотрев премиальные показы и возможность монетизации для самых удачливых. Имеет значение и то, как Яндекс оценивает успешность блога. Основными показателями являются количество дочитываний и совокупное время, потраченное читателями на прочтение материалов. Вполне осмысленные показатели, неправда ли? А ещё Яндекс штрафует за неоригинальный контент перепечатки из других источников , ограничивая показы. Пиши сам, пиши интересно, тебя будут читать, и чем больше прочтут, тем больше аудитория у тебя будет. Схема выглядит справедливой, а стало быть, её реализацию можно только приветствовать.

Но есть подводный камень, о который всё разбивается. Конечным критерием, лежащим в основании всей механики Яндекс-Дзен, является поведение пользователей. А наше поведение вовсе не безупречно. Человек не очень-то любит интеллектуально трудиться. Мы, конечно, читаем при необходимости и серьёзные материалы, но с гораздо большим удовольствием мы будем перелистывать красивые картинки, смотреть забавные сюжеты, читать что-нибудь короткое, лёгкое и занимательное. Такой контент мы будем раскрывать гораздо чаще. С другими поведенческими показателями тут тоже будет всё в порядке: короткий текст проще дочитать до конца, и в совокупности на этот информационный «песок» — маленькие и пустые сообщения — у нас уйдёт больше времени, чем на считанные обращения к длинным и серьёзным текстам.

Распознав наши предпочтения, искусственный интеллект скорректирует персональную выдачу, наполнив нашу ленту её ещё большим количеством подобных материалов. Развлекать себя станет проще, а вероятность обнаружить что-нибудь действительно стоящее будет стремиться к нулю. Некоторое раздражение по этому поводу, неизбежно присутствующее поначалу, со временем уйдёт — человек хорошо адаптируется и привыкает к любой информационной среде. Аналогичный механизм действует и в отношении авторов публикаций. Поскольку незатейливые и короткие материалы легко находят аудиторию, именно они собирают показатели, необходимые для стабильного существования блога внутри Яндекс-Дзен. Что бы там ни думал автор, если он хочет сделать свой блог популярным, его материалы должны быть скорее развлекательными, чем серьёзными. На выходе мы получаем систему, в которую заложена тенденция понижения интеллектуального уровня публичной среды или, попросту говоря, работающую на оглупление общества.

При этом, заметим, никаких специальных установок на этот счёт не предусмотрено. Нет никакой злой воли.

Этот год дает уникальные преимущества для людей, которые ищут работу в сфере ИИ, чтобы добиться успеха, считает Бинни Гилл, основатель и генеральный директор Kognitos, стартапа, который использует генеративный искусственный интеллект для автоматизации бизнес-процессов. По словам эксперта, технологические стартапы в области ИИ сейчас тоже имеют хорошие шансы привлечь финансирование и таланты, которым тесно в рамках крупных корпораций. Некоторые таланты в области искусственного интеллекта даже пытаются создать собственные компании.

По словам Нельсон они думают: «Зачем мне брать миллион зарплаты, если я могу сделать это сам и потенциально получить десятки миллионов»?

За 2019 год компания выплатила авторам более 1 млрд рублей [16] [17]. До запуска платформы ленты пользователей «Дзен» состояли только из публикаций, отобранных из общедоступных источников [18]. По заверению руководства сервиса, стоит цель создать социальную медиаплатформу, где создатели контента общаются с читателями, а также вырастить внутри «Дзена» авторов, для которых он станет ключевой площадкой [19]. Создавать и редактировать контент можно с помощью десктопного редактора, а также через мобильное приложение [20]. В сентябре 2019 года, после нескольких месяцев тестирования, для всех пользователей платформы стала доступна функция размещения видеороликов с максимальной длительностью 15 минут. Уже на этапе тестирования новый формат приобрёл большую популярность, чем текстовый, и в апреле 2020 года сервис увеличил длину размещаемых видеороликов до 60 минут, а также начал внедрять рекламу в видеоматериалы, которые длятся больше двух минут [21]. В июне 2021 года стало известно, что «Яндекс» купил видеоредактор Hypee, чтобы у пользователей «Дзена» была возможность экспериментировать с эффектами и музыкой в роликах [23].

Нирвана править В 2018 году Дзен запустил программу «Нирвана» [24] для поддержки авторов и медиа, создающих качественный контент. Участники программы получают приоритет в показах в лентах «Дзена». Кроме того, у каждого из них есть персональный менеджер, который сообщает автору о нарушениях, даёт советы по ведению канала [25]. Для попадания в программу авторам необходимо соответствовать ряду условий: На Дзен-канале должно быть 100 подписчиков; Не менее трёх материалов за прошедший месяц; Соблюдение правил «Дзена» [26]. Монетизация править Возможность монетизации появилась, когда в 2017 году Дзен стал платформой для создания контента, а не только его распространения [27]. Зарегистрированные в «Дзене» блогеры могли получать за свои посты деньги если они собрали минимум 7 000 дочитываний за неделю [28]. В 2019 году «Дзен» выплатил авторам за размещение рекламы в статьях более 1 млрд рублей [29]. В апреле 2020 года вышли новые правила, следуя которым, каналу, чтобы подключить монетизацию, требуется 10 000 минут просмотра за семь дней подряд предыдущие правила предусматривали примерно 12 000 минут чтения за неделю.

Также с появлением видеороликов на платформе появился и новый вид заработка — реклама в виде баннера или блока с анимацией. В мае 2020 года у блогеров на платформе появилась возможность размещать виджеты с товарами из «Яндекс. Маркета»: в тот момент такая социальная коммерция была реализована только в статьях [30]. В ноябре 2020 года платформа подписала договор с маркетплейсом «Joom» с аналогичными условиями добавления виджетов, [31] а в апреле 2021 года после успешного тестирования всем авторам каналов с подключённой монетизацией стало доступно размещение виджетов « Авто.

На что способен искусственный интеллект сегодня и каков его потенциал

При этом десктопные решения, с большой долей вероятности, не получат гибридную систему с «малыми» ядрами «С». Дата выхода процессоров на Zen 5 AMD Ryzen 9000 на архитектуре Zen 5 будут представлены уже во второй половине 2024 года. Сообщается, что анонс новинок может состояться примерно в то же время, когда Intel покажет свежие настольные процессоры Arrow Lake-S на новом разъеме LGA 1851.

Также просим ChatGPT придумать заголовок к этой статье и повторяем манипуляцию с переводом. После мы по контексту составляем описание для изображений и скармливаем их Stable Diffusion. Вот и всё! Статья готова, можно смело её публиковать.

Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее. Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных. Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях. Виды нейронных сетей Все нейронные сети можно разделить на несколько видов: однослойные, многослойные, прямого распространения, рекуррентные. Однослойные сети сразу же выдают результат после загрузки в них некоторого массива данных. Многослойные сети прогоняют вводную информацию через несколько промежуточных слоев и принципом своей работы больше напоминают биологическую нейронную сеть. Выходная информация получается после прохождения всех слоев, на которых происходит обработка и анализ. Сети прямого распространения чаще всего используются для распознавания образов, классификации и кластеризации данных — они направлены в одну сторону и не умеют перенаправлять информацию обратно. Ввели данные — получили ответ. Рекуррентные сети перенаправляют информацию туда и обратно, пока не получат конечный результат. Они используют эффект кратковременной памяти, на основании которого информация дополняется и восстанавливается. Такие сети чаще используются для прогнозирования. Каждую нейросеть можно распределить по еще нескольким типам. Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов. На самом деле, классификаций еще больше, но это уже материал для еще одной огромной статьи. Задачи и сферы применения нейросетей Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников исключительно в целях развлечения , нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались. Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных.

Большой потенциал лежит в медицине. Например, во время пандемии ИИ облегчал поиск очагов поражения легких на снимках компьютерной томографии, выделяя подозрительные участки. Наиболее успешно развиваются три направления в медицине: компьютерная диагностика на базе анализа изображений, о чем было сказано ранее, поддержка принятия решений при диагностике, например при определении дозы лекарств. Также ИИ облегчает рутинные рабочие процессы: голосовые боты переводят речь врача в текст для медицинской карты, а роботы-операторы колл-центров записывают пациентов на прием. Рентгенологи Москвы благодаря голосовому вводу уже заполнили свыше 210 тыс. В перспективе ИИ может помочь с разработкой новых лекарств и дженериков, что сэкономит миллиарды рублей на НИОКР и годы кропотливого труда ученых. Все свое, родное Крупные российские технологические компании вкладывают средства в собственные научные исследования и разработки, открывая лаборатории по ИИ и даже целые институты. В апреле «Яндекс» запустил бета-версию нейросети для генерации изображений по текстовым запросам пользователей. Его назвали «Шедеврум». Приложение доступно на мобильных платформах Android и iOS. Нейросеть GigaChat пока доступна в тестовом режиме по приглашениям. В отличие от иностранного аналога, GigaChat лучше понимает запросы на русском языке, заявили в банке. Сбербанк использует решения на базе искусственного интеллекта в большинстве продуктов и процессов компании, ранее заявил президент, предправления Сбербанка Герман Греф. Например, банк использует собственные ИИ-модели для повышения безопасности транзакций: онлайн-переводов, эквайринга, операций по картам. В финансовой сфере благодаря внедрению ИИ существенно сократилось время рассмотрения заявки на кредит.

Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»

Это ограничивает возможность использования центральных процессоров в системах искусственного интеллекта (ИИ). На конкретных примерах рассмотрели, какие задачи способен выполнить искусственный интеллект, а какие нет. Главные новости Новости науки Новости образования Новости ректора Новости институтов Акции, мероприятия Студенческая жизнь Международное сотрудничество Абитуриенту Выпускнику Новости клиники Новости лицеев. Смотрите видео онлайн «Искусственный интеллект и инклюзивное будущее.

ИИ научили искать жизнь на других планетах с точностью в 90%

Разбираемся, что такое искусственный интеллект, каковы принципы его работы и насколько мы близки к появлению полностью сознательных машин. Искусственный интеллект подразумевает собой искуственно созданную машину, умеющую решать задачи с возможностью дальнейшего самообучения. Сегодня мы расскажем о нескольких проектах на базе лаборатории машинного интеллекта Яндекса, где искусственный интеллект участвует. Искусственный интеллект подразумевает собой искуственно созданную машину, умеющую решать задачи с возможностью дальнейшего самообучения. Главная» Архив журнала» 2023 год» Журнал ПЛАС №12 (308)» ИИ-новации в Сбере: искусственный интеллект и не только. Новая технология искусственного интеллекта работает над редактированием человеческого ДНК.

Словесные угрозы

  • Молоко убежало
  • Искусственный интеллект на службе у человека: как нейросети упрощают нашу жизнь
  • Искусственный интеллект заполучил серьезного противника
  • Новости по тегу искусственный интеллект, страница 1 из 51
  • Искусственный интеллект увеличил надежность сети билайна

Google тестирует специализированный ИИ, способный писать новости

Фотография unsplash Важно, что полученный метод уже используется при решении прикладных задач компьютерного зрения — для поиска объектов и распознавания текстов. Разработка также может стать неотъемлемой частью беспилотных автономных систем, расширив класс задач, которые могут выполнять бортовые компьютеры. Специалисты Smart Engines отмечают, что на текущий момент нейросети в основном выполняются на специализированных видеокартах, однако не каждый компьютер ими оснащен. При этом любое пользовательское устройство имеет центральный процессор, мировым стандартом для которых является использование 8-битных нейронных сетей. Однако глубокие нейронные сети усложняются, содержат сотни миллионов и более коэффициентов, что требуют большей вычислительной мощности. Это ограничивает возможность использования центральных процессоров в системах искусственного интеллекта ИИ.

Кроме того, стартап признает, что злоумышленники могут производить с ними дипфейки. Подпишитесь , чтобы быть в курсе. В предыдущих версиях продукта аватары разговаривали без каких-либо эмоций, однако перед нынешним релизом стартап тщательно поработал над их динамичностью. По словам компании, теперь аватары используют правильный тон голоса, язык тела и движения губ, как живые актёры.

Перспективы развития ИИ По мнению американской исследовательской компании Gartner, практически все прорывные цифровые технологии, которые планируют выпустить в ближайшие 6-8 лет, связаны с искусственным интеллектом, поэтому необходимость использования таких технологий будет возрастать. В своем исследовании она обозначила три главных технологических тренда: 1. Самообучающиеся алгоритмы, которые позволяют использовать большие массивы данных без их предварительной подготовки т. Такой подход наиболее актуален для задач, связанных с компьютерным зрением, например, когда нужно верифицировать ручные подписи или определить расстояние до объекта на видео, и задач обработки естественного языка, при которых на вход моделям подаются текстовые документы и далее с помощью ИИ могут прогнозироваться следующие предложения или автоматически определяться «токсичные» фразы. Нейроморфные вычисления позволят точнее моделировать работу человеческого мозга с помощью создания большего числа искусственных нейронов в одной сети. Например, уже сейчас в рамках проекта OpenWorm разработали копию нервной системы круглого червя Caenorhabditis elegans, состоящей из 302 нейронов. Благодаря этому можно будет повысить точность продуктов на базе ИИ и оптимизировать их производительность. В отличие от описанных выше технологий, цель этого продукта — не заместить людей, а подружить их с ИИ в максимальном числе отраслей и сфер применения через совместную работу. Мировые ИТ-корпорации, такие как Google, развивают AI, в котором по умолчанию оставляют место для человека. Благодаря HCAI специалисты смогут качественнее и быстрее принимать решения, а искусственный интеллект будет работать безопаснее и эффективнее. В ближайшие годы объем технологий на основе машинного обучения и нейросетей будет кратно увеличиваться. Уже сегодня компании, которые не делают фокус на развитии и внедрении AI, не просто начинают отставать от более технологичных организаций, но и рискуют, что их клиенты уйдут к конкурентам, использующим ИИ: так, Google может потерять контракт с Samsung на 23 млрд долларов, так как последняя рассматривает возможность замены поисковика корпорации на продукт от Microsoft Bing, в котором интегрирован чат-бот. Поэтому бизнесу желательно определить, какие технологии искусственного интеллекта он может внедрить, чтобы оптимизировать внутренние процессы и повысить свою привлекательность на рынке. Читать далее:.

Например, в банках AI используют в кредитных продуктах для скоринга: благодаря этому можно автоматически принять решение по выдаче кредита. Внедряют такие инструменты и на производстве, например, в BMW ИИ используют , чтобы оценить изображения компонентов и выявить в них отклонения от стандарта в режиме реального времени. Тем не менее, есть и такие технологии, которые может использовать любой бизнес: для этого берут готовое решение и дорабатывают под собственные нужды. Компьютерное зрение Это набор технологий, который позволяет при помощи нейросетей обрабатывать визуальную информацию с камер. Благодаря машинному зрению можно распознавать штрих-коды, текст, изображения, в т. Например, биометрическая система позволяет верифицировать личность для доступа в офис или для оплаты товаров и услуг, а в «Пятерочке» ее применяют для «узнавания» постоянных клиентов, чтобы автоматически предлагать им скидки, и для выявления серийных магазинных воров. С помощью системы распознавания жестов же можно взмахом руки попросить переключить музыку или изменить громкость трека. Так, Google внедрила ее в мобильные устройства и умные колонки, а Huawei — в свой флагманский смартфон. Такие инструменты повышают безопасность и уровень сервиса, ведь человеку не приходится вводить дополнительные данные для проверки или нажимать на кнопки для управления оборудованием. Например, российский сервис Directum RX помогает классифицировать входящие электронные письма и документы по типам, чтобы снизить время их обработки, а другая отечественная RPA Sherpa проверяет контрагентов перед заключением договора. Прогнозные модели Такие инструменты могут применяться в абсолютно разных сферах: от ритейла чтобы предсказывать продажи в супермаркетах, как это делает X5 Retail Group для каждого из своих 16 000 магазинов до логистики, чтобы планировать поставки. Благодаря использованию таких технологий можно прогнозировать спрос на ресурсы, сырье, рабочую силу, а также создавать более эффективные стратегии развития бизнеса, корректировать маркетинг и финансовые операции и улучшать пользовательский опыт. Генеративные модели Компании активно внедряют алгоритмы AI для генерации изображений, текста и видео в свои сервисы для улучшения пользовательского опыта. Так, Duolingo анонсировала новые функции в приложении на основе GPT-4: в одной из них пользователь может практиковать иностранный язык в диалоге с персонажами сервиса, а в другой — узнать больше о своем ответе на уроке, чтобы понять, например, почему человек совершает одну и ту же ошибку. А в современных архитектурных бюро же используют сервисы для генеративного дизайна, которые помогают оптимизировать придуманные решения, например, заменяют узел из нескольких деталей в чертеже на такой же с одним компонентом.

Что такое нейросети: на что способны, как работают и кому нужны

Многие фирмы также предлагает гибкий или гибридный график работы и вкладывают значительные средства в программы обучения и развития. Этот год дает уникальные преимущества для людей, которые ищут работу в сфере ИИ, чтобы добиться успеха, считает Бинни Гилл, основатель и генеральный директор Kognitos, стартапа, который использует генеративный искусственный интеллект для автоматизации бизнес-процессов. По словам эксперта, технологические стартапы в области ИИ сейчас тоже имеют хорошие шансы привлечь финансирование и таланты, которым тесно в рамках крупных корпораций. Некоторые таланты в области искусственного интеллекта даже пытаются создать собственные компании.

В разных специальностях есть несколько научных школ, которые могут конкурировать друг с другом. На примере электрокардиограммы приведу пример, когда в России активно используются три школы: советская, российская и американская.

Они во многом отличаются. Если для человека разница между ними незначительна, то для машины она критическая. Когда наши врачи видят американскую электрокардиограмму перед собой, они даже не знают, как ее трактовать и как категорировать. Для этого существуют инструменты аннотирования, которые позволяют, во-первых, сделать так, чтобы несколько врачей регистрировали одну и ту же единицу исследований, а специалисты, которые работают с данными компании, могли проанализировать и измерить такой параметр, как коэффициент согласия, позволяющий на примере трех и более экспертов верифицировать единицу данных, а уже после производить исследования", - сказал Андрей Бурсов. Он упомянул, что ИИ в медицине начал активно внедряться в 2019 г.

Операционный директор ООО "Первый электронный рецепт" Григорий Милешкин сообщил, что региональные врачи за все время выписали более 5 млн электронных рецептов, а в 2024 г.

Это искусственный интеллект, который в компании называют «персональным помощником журналиста». Чем он отличается от уже существующих алгоритмов ИИ, которые умеют оперировать информацией? Теоретически вести ее поиск, составлять новостные материалы в разном стиле, рассказали на условиях анонимности источники The New York Times.

Используя среду разработки, предприятия могут написать свои алгоритмы, к примеру, для обработки обращений клиентов или улучшения прогнозирования спроса. Развивающиеся страны получат наименьшую выгоду, поэтому есть риск усиления цифрового неравенства. Почти три четверти бизнес-лидеров положительно оценивают роль ИИ после пандемии и сопутствующего кризиса. По мнению экспертов Оксфордского университета, к 2026 году ИИ напишет эссе, которое сойдет за написанное человеком, заменит водителей грузовиков к 2027 году и станет выполнять работу хирурга к 2053 году. Также ИИ превзойдет людей во всех задачах в течение 45 лет и автоматизирует все рабочие места в течение 120 лет. По словам экспертов и представителей бизнеса, ИИ помогает компаниям прогнозировать и выявлять проблемы, а также восполняет нехватку навыков сотрудников, хотя до построения бизнес-стратегии искусственным интеллектом еще далеко.

Тем не менее, компании так и не научились извлекать из ИИ реальную выгоду. И это не единственный проблемный момент в сфере искусственного интеллекта. Основные вызовы технологии ИИ Бизнес-процессы Чтобы компания извлекала прибыль, недостаточно вложить средства в алгоритм и получить первые успешные результаты после запуска пилотного проекта. Внедрение ИИ — это многоуровневый процесс, включающий культурные изменения в компании, найм и обучение специалистов по data science, автоматизацию и построение бизнес-процессов с учетом алгоритмов, и на этом весь список не заканчивается. Компания должна быть на определенном уровне технологической зрелости для того, чтобы внедрение ИИ приносило пользу», — говорит Леонид Жуков, генеральный директор Института Искусственного Интеллекта AIRI, старший управляющий директор Лаборатории по искусственному интеллекту Сбербанка. Выступая на международной конференции Сбера AI Journey 2021, Юрген Шмидхубер, ученый в области искусственного интеллекта, главный научный советник Института Искусственного Интеллекта AIRI и научный руководитель компании NNAISENSE отметил, что компании в основном сосредоточены на своих частных проблемах, а не на развитии технологий искусственного интеллекта: большая часть их прибыли от ИИ приходится на маркетинг и продажу рекламы. Такие гиганты как Alibaba, Amazon, Facebook, Google массово используют глубокие искусственные нейронные сети, например, Long-Short-Term Memory , чтобы предсказать спрос пользователей и дольше удерживать их на своих платформах, заставляя переходить по большему количеству рекламных объявлений. Нехватка специалистов ИИ развивается с высокой скоростью, и то, что называлось полгода назад state-of-the-art высшим уровнем развития , сегодня может оказаться средней разработкой.

История развития ИИ

  • Материалы рубрики
  • Публикации
  • Искусственный интеллект научился замедлять старение
  • Нейросетевой хайп
  • Как работает алгоритм Яндекс Дзен и как его понять

AMD запустила производство процессоров на архитектуре Zen 5 со встроенным ИИ

Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд. Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают. Примеры самых полезных и интересных нейронных сетей Нейросетей в интернете великое множество. Среди них можно выделить несколько полезных и интересных простому обывателю. Ваши друзья, скорее всего, уже установили себе на смартфон приложение Lensa, превращающее обычные селфи в удивительные яркие аватарки. На YouTube можно найти множество примеров подобных роликов: А одна российская студия недавно даже сняла целый DeepFake-сериал с поддельными западными актерами. Можно даже послушать поток бесконечной генеративной музыки.

Но это все развлекательные примеры использования нейросетей. Есть ли какие-то полезные? Нейросеть DeOldify позволяет раскрашивать старые черно-белые фотографии. Looka поможет создать логотип для вашего бренда. А нашумевший ChatGPT от OpenAI позволяет задать чат-боту любой вопрос и получить на него развернутый ответ — в скором будущем эта технология сможет заменить собой целые поисковые системы или сделать их намного более дружелюбными по отношению к пользователю. Что в итоге Теперь вы знаете, для чего нужны нейросети и что делает нейросеть. Как вы уже могли убедиться, нейросети все больше проникают в наше цифровое пространство, позволяя получать удивительные результаты и решать задачи, которые раньше невозможно было бы решить без привлечения нескольких сотен или тысяч сотрудников. Они умеют обрабатывать гигантские базы знаний, подражать знаменитым художникам и писателям, создавать сюрреалистические изображения и менять актеров в кинофильмах на любых других. Но это только начало.

TDP - от 70 Вт до 130 Вт. AMD планирует выступить с докладом на выставке Computex 2024. Возможно, именно там и стоит ждать официального анонса новой линейки Ryzen 9050.

Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных. Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях. Виды нейронных сетей Все нейронные сети можно разделить на несколько видов: однослойные, многослойные, прямого распространения, рекуррентные. Однослойные сети сразу же выдают результат после загрузки в них некоторого массива данных. Многослойные сети прогоняют вводную информацию через несколько промежуточных слоев и принципом своей работы больше напоминают биологическую нейронную сеть. Выходная информация получается после прохождения всех слоев, на которых происходит обработка и анализ. Сети прямого распространения чаще всего используются для распознавания образов, классификации и кластеризации данных — они направлены в одну сторону и не умеют перенаправлять информацию обратно. Ввели данные — получили ответ. Рекуррентные сети перенаправляют информацию туда и обратно, пока не получат конечный результат. Они используют эффект кратковременной памяти, на основании которого информация дополняется и восстанавливается. Такие сети чаще используются для прогнозирования. Каждую нейросеть можно распределить по еще нескольким типам. Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов. На самом деле, классификаций еще больше, но это уже материал для еще одной огромной статьи. Задачи и сферы применения нейросетей Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников исключительно в целях развлечения , нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались. Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных. Камеры телефонов научились применять автоматические настройки и фильтры во время съемки самых разных объектов, понимая, что вы снимаете еду, природу или архитектуру. Поиск по картинкам, по словам или по названиям каких-либо объектов также может использовать простенькую нейросеть. Например, в iOS вы можете найти все фотографии кошек из галереи изображений, просто написав в поиске слово «кошка».

Предполагается, что ИИ сможет разгрузить журналистов, став инструментом их работы, но заменить не сможет. Сами журналисты крупных изданий несколько скептически относятся к Genesis хотя разработчики этого ИИ и не скрывают: фактчекинг остается за человеком. В The Verge напоминают , как на первой волне популярности ChatGPT некоторые издательства начали массово увольнять пишущих журналистов, в том числе сотрудников, отработавших в популярных изданиях много лет.

Бизнес-практика ИИ

  • AMD запустила производство процессоров на архитектуре Zen 5 со встроенным ИИ - Hi-Tech
  • Искусственный интеллект увеличил надежность сети билайна
  • Комментарии
  • Как работает алгоритм Яндекс Дзен и как его понять
  • ИИ-новации в Сбере: искусственный интеллект и не только

Похожие новости:

Оцените статью
Добавить комментарий