Новости термоядерная физика

Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха.

Американские физики повторно добились термоядерного зажигания

В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров. К этому нужно добавить безмерную стоимость оборудования и затраты на его содержание».

Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся. Плазма подобна надутому воздушному шарику — как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами.

Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды — ее гравитационное давление постоянно сжимает ядра атомов вместе. Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу. Как причесать ежа, или попытки удержать плазму К решению задачи удержания плазмы вплотную подошли советские ученые Института им. Курчатова в 1950-х. В магнитной ловушке, созданной под руководством академиков Андрея Сахарова и Игоря Тамма, горячая смесь дейтерия и трития удерживалась с помощью магнитного поля и не касалась стенок реактора. Эта экспериментальная установка c вакуумной камерой в форме бублика тора стала известна во всем мире под именем Токамак — тороидальная камера с магнитными катушками.

В ней впервые удалось достичь температуры термоядерной реакции в 100 миллионов градусов — почти в 10 раз больше, чем внутри Солнца! У любого термоядерного реактора типа токамака есть отверстие в центре. Объясняется это теоремой о причесывании ежа, согласно которой невозможно причесать свернувшегося клубком ежика так, чтобы ни одна его иголка не торчала наружу. Если придать плазме форму шара, то ее магнитное поле всегда будет иметь минимум одну выпадающую точку. С тором такой проблемы не возникнет, его можно гладко «причесать» по всей поверхности, причем разными способами. Так выглядит изнутри тороидальная камера токамак для осуществления реакции синтеза Прошло почти 70 лет, но токамак все еще остается самым перспективным типом термоядерных реакторов — практически у каждой развитой страны сегодня есть собственная тороидальная установка. Реакторы других форм создают для изучения свойств плазмы.

Например, сферический токамак напоминает сплюснутый глобус и позволяет дольше удерживать плазму. А в стеллараторе, прозванном «мятым бубликом», магнитные катушки находятся снаружи тора, за счет чего он может работать без перерывов, в отличие от классического токамака. Существуют и альтернативные виды реакторов, например установки на инерциальном удержании. На тритий-дейтериевую мишень размером с булавочную головку направляют больше сотни сверхмощных лазеров. Они нагревают мишень до сотен миллионов градусов и сжимают в тысячи раз, запуская термоядерную реакцию. Такую энергию, полученную лазерным синтезом, можно контролировать и использовать. Однако подобные реакторы работают в импульсном непостоянном режиме, поэтому вещество быстро разлетается и долго удерживать плазму не удается.

Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон.

В Китае и Германии достигнуты новые прорывные результаты в области управляемого термоядерного синтеза Китайский токамак EAST 14 апреля 2023 656 12 апреля 2023 года китайский токамак EAST сокращение от «experimental advanced superconducting tokamak» - экспериментальный усовершенствованный сверхпроводящий токамак , установил новый мировой рекорд длительности удержания плазмы с параметрами, необходимыми для термоядерного синтеза. Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду.

Соответственно, эта часть спроса сохранится. А вот энергетический уголь пострадает довольно сильно. Но пока стадия, в которой находятся исследования, не позволяет сделать надежных выводов. Если действительно реактор, работающий на ядерном синтезе, удастся технически реализовать, это будет огромный прорыв. Это сильно изменит мировую экономику.

Причем очень сильно. Но пока это все-таки относится к области научной фантастики, это достаточно далеко от реальности». В разработку термоядерных технологий инвестирует и Россия. В апреле на токамаке московского Курчатовского института была получена первая термоядерная плазма.

Мегаджоули управляемого термоядерного синтеза

Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития. Зачем на самом деле строится самый большой термоядерный реактор. Делается вывод о том, что термоядерные исследования способны выступать и уже выступают мощным драйвером научно-технологического прогресса, механизмом, стимулирующим. Американцы совершили прорыв в изучении термоядерной энергии. Реакторы термоядерного синтеза имитируют ядерный процесс внутри Солнца, сталкивая более легкие атомы вместе и превращая их в более тяжелые. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.

Термоядерный синтез вышел на новый уровень: подробности

Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром? Финляндия тонко намекает, что может вновь стать частью Российской Империи В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини. В июле 1946 года с другими британскими участниками проекта вернулся в Великобританию, где стал начальником отдела теоретической физики Научно-исследовательского атомного центра в Харуэлле.

С 1947 года связь с Фуксом вёл заместитель резидента по технической разведке А. Феклисов, которому Фукс передал информацию о производстве плутония в США, о реакторах британского атомного центра в Уиндскейле, принципиальную схему водородной бомбы, результаты испытаний ураново-плутониевой бомбы на атолле Эниветок, данные о британо-американском атомном сотрудничестве и многое другое. Между тем над головой Клауса начали сгущаться тучи.

Среди выданных Гузенко оказался и британский физик-ядерщик Алан Мэй. Он был арестован в марте 1946 года, а уже 1 мая того же года приговорён к 10 годам каторжных работ. Предъявить что-либо конкретное Фуксу британская контрразведка не могла, но за ним была установлена открытая слежка.

Фукса допрашивал лучший британский следователь из МИ-5 — Скардон, тот самый, который пытался расколоть и некоторых членов Кембриджской пятёрки. Но и он уже было решил отказаться от бесполезных допросов Клауса Фукса. И тут совершенно неожиданно Фукс сломался.

Читайте также 89 — много. А сколько регионов нужно России для счастливой жизни? Жители не всех «ликвидированных» территорий довольны произошедшей оптимизацией Когда в Лондоне официально заявили: «Ученый-атомщик Фукс передавал секретную информацию агентам советского правительства», официальный ТАСС 8 марта 1950 г.

В тот же день он вернулся в Германию ГДР.

Доставить сборку таких размеров целиком тяжело и дорого, поэтому было принято решение конструктивно разбить криостат на четыре крупных фрагмента поддон, две цилиндрические обечайки и крышка. Каждый из этих фрагментов будет собираться из более мелких сегментов. Всего сегментов 54. Их производством занята Индия. Затем фрагменты, после сборки в Здании криостата, по очереди будут перемещены и установлены на место — в шахту реактора [33]. Для снижения влияния нейтронного излучения токамака на окружающую среду криостат будет окружён «одеялом» из специального бетона, которое называют «биозащита» англ.

Толщина биозащиты над криостатом составит 2 м. Эти выступы на сайте ITER называют «короной» «crown». Арматура элементов короны имеет очень сложный макет; для приготовления бетона будет использован гравий , добываемый в Лапландии [34]. Control, Data Access and Communication — управление, доступ к данным и связь является основной системой управления при эксплуатации ИТЭР-токамака. В настоящий момент команда проводит консультации с ведущими институтами и привлечёнными компаниями в целях принятия наилучших технических решений для ИТЭР. Central Safety Network — Сеть централизованной защиты ; терминалы; датчики. Организационно вся система управления делится на следующие подразделения: Центральный контроль и автоматизация, мониторинг и обработка данных Central supervision and automation, monitoring and data handling.

Отображение данных и управление HMI англ. Human Maсhine Interface. Подразделение включает в себя терминалы и мнемосхемы, системы Центральной блокировки CIS англ. Central Safety System. Обе системы обладают собственными регистраторами параметров. Группа управления ITER англ. В составе два сервера: сервер обслуживания и приложений; шлюз доступа к каналам данных.

Система токамака англ. Система обеспечивает получение потока данных с токамака и осуществляет непосредственное управление исполнительными механизмами. Система состоит из трёх уровней: Контроллеры. Каждый контроллер соединён шиной со своим интерфейсом. Интерфейсы в большинстве своем аналого-цифровые преобразователи преобразуют аналоговые данные с датчиков в цифровые данные. Некоторые интерфейсы преобразуют команды, полученные от контроллеров в команды для исполнительных механизмов. Датчики и исполнительные механизмы.

Топливом для токамака ITER служит смесь изотопов водорода — дейтерия и трития. Критерий Лоусона для данного типа реакции n.

Выбиваемые из стенки примесные атомы и молекулы поступают и могут накапливаться в плазме, приводя к дополнительным потерям на излучение, диссипации тока и даже деградации разряда. Накопление примесей вблизи стенки продуктов её эрозии увязывают с сокращением длительности разряда. Кроме того, стенка может довольно эффективно абсорбировать изотопы водорода, служащие термоядерным горючим. Отчётливо видно, что для сверхпроводящих систем повышение длительности разряда пока удаётся совмещать только со снижением нагрузки на стенку.

Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора. При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива. Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ]. Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода.

Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры? Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём. Речь идёт о проработке возможности сооружения магнитного термоядерного реактора в космосе на околоземной орбите. Такой подход имеет ряд потенциальных преимуществ включая гарантированную реализацию нулевого рециклинга , хотя и представляется труднореализуемым.

При этом магнитная конфигурация термоядерного реактора космического базирования может и должна быть предметом оптимизации, в том числе по параметрам таким как вес, присутствие дополнительных систем, простота монтажа и пр. Поэтому реализацию этого направления следовало бы начать с глубокой концептуальной проработки и маломасштабных космических экспериментов. Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки. Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г.

Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе.

Система удержания плазмы токамак изобретена и предложена в Советском Союзе в Курчатовском институте, и это наш главный вклад. То есть вся кооперация, весь мир строит реактор в концепции, предложенной нашими учеными». Интересно и то, что соглашение об ИТЭР состоит из двух частей. Первая: о создании самого проекта и его реализации, а вторая — как страны участники будут делить интеллектуальную собственность, которая создается. Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов. Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора.

Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами. А вот ИТЭР — как ледокол: идет, и об его крепкий корпус все мелочные нюансы текущей жизни мировой разбиваются.

ядерная физика

Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. Американцы совершили прорыв в изучении термоядерной энергии. В начале 2023 года появилась новость, что сроки запуска Международного экспериментального ядерного реактора (ИТЭР) переносятся с 2025 года на неопределенный срок из-за выявленных. Когда стали создаваться термоядерные установки, возникла большая наука – это физика высокотемпературной плазмы.

Выбор сделан - токамак плюс

все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. В саровском ядерном центре готовится к запуску лазерная установка для экспериментов по управляемому термоядерному синтезу УФЛ-2М. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд. Эксперимент, в ходе которого был преодолен порог термоядерного синтеза, проводили на установке National Ignition Facility (NIF).

Термоядерный синтез вышел на новый уровень: подробности

В Китае и Германии достигнуты новые прорывные результаты в области управляемого термоядерного синтеза Китайский токамак EAST 14 апреля 2023 656 12 апреля 2023 года китайский токамак EAST сокращение от «experimental advanced superconducting tokamak» - экспериментальный усовершенствованный сверхпроводящий токамак , установил новый мировой рекорд длительности удержания плазмы с параметрами, необходимыми для термоядерного синтеза. Нынешний рекорд составил 403 секунды чуть менее 7 минут. Предыдущий рекорд был установлен на том же EAST в 2017 году и составлял 101 секунду.

На Солнце этот процесс приводится в действие силой гравитации. Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция. Первые эксперименты, первоначально запланированные на 2018 год, были перенесены на 2025 год.

В Китае прототип промышленной термоядерной электростанции был продемонстрирован пару лет назад. Что же касается той новости, которую вы пересказываете сейчас, то это типичная армия Венка, которая вот-вот придет и спасет Берлин;.

В идеале значение Q должно достигать десяти.

Но создание подобной установки не под силу ни одной стране мира в одиночку. Поэтому в 1980-х гг. Горбачев, президенты Р. Рейган США и Ф. Миттеран Франция поддержали эту идею. Но прошло еще два десятилетия, прежде чем мир сделал очередной шаг к термоядерному будущему: было определено место для строительства экспериментального реактора. Выбор пал на область Прованс на юго-востоке Франции. Это место соответствовало всем требованиям, включая комфортный климат и хорошую транспортную доступность, в том числе по морю.

Последнее было важно, так как планировалась транспортировка громоздких деталей, вес которых мог достигать 100 т и более. Наконец, уже в середине первого десятилетия нового века, началось строительство токамака ИТЭР. Арцимович, внесший огромный вклад в реализацию советской программы по управляемому термоядерному синтезу, говорил, что термоядерная энергия будет освоена тогда, когда она действительно понадобится человечеству. Состоятельной и обоснованной критики проекта ИТЭР и термоядерной энергетики в целом на сегодня нет. В сборнике, недавно изданном нашим центром, представлено свыше трех десятков подобных новых технологий, которые уже активно внедряют в своих лабораториях и на производствах российские организации, участвующие в реализации проекта. Но хотя проект ИТЭР сегодня является технологической платформой термоядерной энергетики, для создания самого термоядерного реактора необходимо развить еще ряд технологий, выходящих за рамки проекта. Например, нужно решить проблемы с генерацией стационарного неиндуктивного тока, созданием электромагнитной системы из высокотемпературного сверхпроводника и т. Эксперименты, которые в дальнейшем будут проводиться на ИТЭР, дополнят этот перечень.

В программах термоядерных исследований всех технологически развитых стран в качестве горючего сегодня рассматривается дейтерий-тритиевая смесь. Планируется, что полномасштабная реализация процессов горения термоядерной плазмы в ИТЭР будет достигнута во второй половине 2030-х гг. Но потребуется еще около 15 лет, чтобы построить термоядерный реактор ДЕМО , где будет генерироваться электрическая и тепловая энергия» Институт ядерной физики им. Порт-плаг одновременно служит и «окном» в горячую область, так как является носителем многочисленных диагностических устройств, и «пробкой» на пути потока нейтронов, генерируемых в плазме. В защитных модулях порт-плагов разместят диагностические системы, поставляющие информацию о состоянии вещества на центральный пульт.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Это могло бы стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и, конечно, избавиться от вредных выбросов в атмосферу. В Ливерморской национальной лаборатории воспроизвели т. Эксперимент проходил в минувшие две недели. В Министерстве энергетики США уже назвали результаты эксперимента «крупным научным прорывом». Полученные данные всё ещё проверяются.

Однако точные данные о выходе энергии все еще уточняются, и мы не можем подтвердить, что в настоящее время она превышает пороговое значение, — говорится в сообщении Ливерморской лаборатории.

Чем плотнее материал, тем большее количество горючих частиц он содержит, что повышает вероятность термоядерного синтеза. В ядерных реакторах типа токамак эта плотность ограничена. Однако в ходе недавнего эксперимента ученым из General Atomics компании, специализирующейся на ядерной физике удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания. Подробности были опубликованы в журнале. Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора.

Если ранее термоядерной энергетикой занимались преимущественно государственные учреждения, то в последнее время инвестиции в соответствующую отрасль потекли и в частные компании, обещающие создать работоспособные технологии к 2030-м годам. Хотя многие учёные считают, что до появления термоядерных электростанций пройдут ещё десятилетия, новости невозможно игнорировать. Термоядерные реакции намного безопаснее с экологической точки зрения, чем обычные ядерные. К тому же даже небольшое количество водорода в теории способно снабжать дом энергией в течение сотен лет. Это особенно актуально на фоне роста цен на углеводороды и глобального потепления. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.

Федеральная Ливерморская национальная лаборатория имени Лоуренса в Калифорнии использует так называемый термоядерный синтез с инерционным удержанием — при этом крошечная частичка водородной плазмы бомбардируется крупнейшим в мире лазером. В ходе эксперимента за последние две недели удалось добиться чистого прироста энергии. Даже при том, что многие ученые считают, что создание термоядерных электростанций станет возможным лишь спустя десятилетия, потенциал этой технологии трудно переоценить. Реакции термоядерного синтеза не выделяют ни углерода, ни радиоактивных отходов с долгим периодом полураспада, а небольшая чашка водородного топлива теоретически может питать дом в течение сотен лет. Американский прорыв свершился в момент, когда мир столкнулся с высокими ценами на энергию и необходимостью скорейшего отказа от ископаемого топлива, чтобы не допустить опасного скачка средних мировых температур. В соответствии с Законом о снижении инфляции администрация Байдена вложит в новые субсидии на низкоуглеродную энергетику почти 370 миллиардов долларов — это поможет сократить выбросы и выиграть глобальную гонку за чистые технологии следующего поколения. Если все пройдет хорошо, этот проект позволит получать самую "зеленую" энергию. Французские читатели тронуты верностью россиян. Проект начинался при Горбачеве, когда Запад "был еще цивилизованным".

Преимущества и недостатки термоядерных реакторов

  • Другие новости
  • Американцы произвели термоядерный прорыв к 100-летию советского академика Басова
  • Термоядерный запуск. Как Мишустин нажал на большую красную кнопку | Аргументы и Факты
  • Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
  • Что такое термоядерный синтез и зачем он нужен?

Курсы валюты:

  • Статьи по теме «термоядерный синтез» — Naked Science
  • Главные новости
  • Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика
  • «Я даже обрадуюсь»
  • Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза

Выбиваемые из стенки примесные атомы и молекулы поступают и могут накапливаться в плазме, приводя к дополнительным потерям на излучение, диссипации тока и даже деградации разряда. Накопление примесей вблизи стенки продуктов её эрозии увязывают с сокращением длительности разряда. Кроме того, стенка может довольно эффективно абсорбировать изотопы водорода, служащие термоядерным горючим. Отчётливо видно, что для сверхпроводящих систем повышение длительности разряда пока удаётся совмещать только со снижением нагрузки на стенку. Одна из них заключается в использовании жидкого лития как материала с низким зарядовым числом в промежуточном слое между плазмой и стенкой или пластинами дивертора. При этом возможные функции такого литиевого слоя могут несколько разниться. Литий должен собираться специальными литиесборниками и очищаться от абсорбированных продуктов — но уже вне камеры. Извлечённые изотопы водорода направляются в систему подачи топлива. Кроме того, часть принимаемой литиевым слоем энергии может высвечиваться в виде ультрафиолетового излучения, снижая температуру пристеночной плазмы и способствуя более равномерному распределению тепловой нагрузки по стенке камеры [ 11 ].

Большие объёмы циркулирующего лития и его проникновение в основную плазму — вот основные трудности на пути реализации этого подхода. Можно ли обеспечить относительно быстрое ламинарное течение тонкого слоя жидкого лития по металлической пластине, полностью поглощаю-щего попадающие в него частицы плазмы так называемый случай нулевого рециклинга? Будет ли при этом автоматически достигаться улучшение удержания плазмы в основном объёме реактора и, как следствие, повышение температуры? Продуктивность этой концепции [ 12 ] и иных возможностей использования лития требует детальной экспериментальной проверки. Дальнейшая экстраполяция этой концепции заключается в полном отказе от стенки, ограждаю-щей плазменный объём. Речь идёт о проработке возможности сооружения магнитного термоядерного реактора в космосе на околоземной орбите. Такой подход имеет ряд потенциальных преимуществ включая гарантированную реализацию нулевого рециклинга , хотя и представляется труднореализуемым. При этом магнитная конфигурация термоядерного реактора космического базирования может и должна быть предметом оптимизации, в том числе по параметрам таким как вес, присутствие дополнительных систем, простота монтажа и пр.

Поэтому реализацию этого направления следовало бы начать с глубокой концептуальной проработки и маломасштабных космических экспериментов. Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки. Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе.

Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент. Чтобы добиться эффекта «зажигания», команда поместила капсулу с тритиевым и дейтериевым топливом в центр облицованной золотом камеры с обедненным ураном и направила на нее 192 высокоэнергетических рентгеновских луча. В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза.

Следует отметить, что идеи космического размещения энергетического реактора обсуждались ещё в 1970-х годах. Целесообразность их рассмотрения в настоящий момент оправдывается качественно иным достигнутым уровнем развития космонавтики, с одной стороны, и прогрессом в термоядерных технологиях и в понимании физики термоядерной плазмы, с другой стороны, что переводит эти идеи из области гипотез в сферу проектов, доступных для воплощения в жизнь за обозримое время, хотя они и не имеют пока достаточно сторонников для серьёзной проработки. Практически с момента начала работ над УТС высказывались идеи об использовании термоядерных нейтронов для производства делящихся изотопов как основы ядерного топлива для АЭС или боеприпасов. В своих воспоминаниях, относящихся к 1951 г. Так как выделение энергии на один акт реакции при процессе деления гораздо больше, чем при процессе синтеза, экономические и технические возможности такого комбинированного двухступенчатого производства энергии оказываются выше, чем при получении энергии непосредственно в термоядерном реакторе. Сегодня при анализе так называемого гибридного подхода, сочетающего термоядерный источник нейтронов ТИН и окружающий его бланкет с сырьевым материалом или отработавшим ядерным топливом ОЯТ , гибридный реактор рассматривают в двух возможных ипостасях: как наработчик топлива для традиционных реакторов деления, используемых на существующих или планируемых АЭС, и как высокоэффективный дожигатель минорных младших актинидов, накапливающихся в результате работы ядерных реакторов. Реакторы деления, составляющие основу существующей атомной энергетики, будут обеспечены делящимися изотопами, произведёнными в гибридных реакторах. Существенно, что бланкет гибридного реактора работает в подкритическом режиме с внешним источником нейтронов, что исключает последствия запроектных аварий с изменением мощности реактивностные аварии и с захолаживанием теплоносителя без срабатывания систем защиты. Оценки показывают, что наибольший эффект в продвижении интегрированной синтез—деление технологии топливного цикла реализуется при ориентации на уран-ториевый топливный цикл, к числу преимуществ которого принято относить следующие. Уран-233 — делящийся изотоп, получаемый из природного тория, наиболее привлекателен для реакторов на тепловых нейтронах. Запасы тория-232 в природе в 3—4 раза больше в сравнении с природным ураном. При добыче тория радиационные нагрузки на окружающую среду принципиально меньше по сравнению с аналогичными, существующими при добыче природного урана. Облучение урана-233 в реакторе не сопровождается накоплением трансурановых актинидов, и проблема трансмутации минорных актинидов с целью создания условий экологической приемлемости современного уран-плутониевого цикла практически устраняется. Вместе с тем, хотя возможность использования ториевого цикла была известна и обсуждалась ещё на заре становления ядерной энергетики, исторически сделанный выбор в пользу уран-плутониевого цикла нельзя сбрасывать со счетов, равно как и определённые трудности, связанные с реализацией ториевого цикла. В любом случае эту концепцию следует рассматривать в увязке с экономикой и ключевыми проблемами атомной энергетики по обеспечению её устойчивого развития и замыкания топливного цикла. Особенность настоящего момента заключается в том, что современный уровень знаний и имею-щиеся наработки в области УТС достаточны для создания ТИН, требования к параметрам плазмы и конструкционным материалам в котором заметно ниже, чем для энергетического реактора, и возможность удовлетворения которых уже подтверждена экспериментально. В соответствии с заключёнными для реализации проекта ИТЭР международными соглашениями каждый партнёр, в том числе Российская Федерация, имеет право на получение безвозмездных лицензий на использование технологий, созданных в рамках проекта ИТЭР для собственных национальных целей. Поэтому все участники проекта ИТЭР кроме России имеют собственные национальные программы и проекты, финансируемые на уровне, превышающем вклады этих стран в проект ИТЭР. Такие национальные программы необходимы, кроме всего прочего, для освоения и использования полученных при строительстве и последующей эксплуатации ИТЭРа результатов и технологий. В начале 2016 г. Ковальчука к главе государства было дано поручение подготовить национальную программу развития управляемого термоядерного синтеза и плазменных технологий. Реализация комплексной программы начинается в 2021 г. Таблица 1.

В начале февраля в журналах Nature и Physical Review Letters вышло сразу три статьи, посвященные недавним результатам американской «Национальной поджигательной установки» National Ignition Facility , NIF. Этот исследовательский комплекс, запущенный в 2009 году в Ливерморской национальной лаборатории им. Лоуренса, изучает возможность реализации инерциального управляемого термоядерного синтеза. Главная цель проекта — продемонстрировать, что с помощью мощных лазеров можно запускать управляемую термоядерную реакцию с хорошим энергетическим выходом. При соответствующем развитии технологий в будущем это сделает термоядерный синтез исключительно эффективным и экологически чистым источником энергии. Прежде чем описывать опубликованные NIF результаты, с этого сообщения нужно сдуть некий налет сенсационности. На первый взгляд заголовки статей очень впечатляют: в NIF получен энергетический выход, превышающий поглощенную мишенью энергию. Эта фраза звучит словно объявление о том, что эффективный источник термоядерной энергии заработал и теперь дело переходит в индустриальную плоскость. Увы, всё обстоит совсем не так. Настоящий энергетический выход — то есть сколько получено термоядерной энергии по сравнению с полной затраченной энергией — остается очень низким, не более одного процента. Поэтому ни о каком полезном применении для энергетики ни сейчас, ни в обозримом будущем речи пока не идет. Исследования здесь находятся лишь в стадии доказательства принципиальной работоспособности технологии. Тем не менее полученный NIF результат пусть и не сенсационен, но тоже очень важен. Он на порядок лучше, чем всё то, что на NIF удавалось получить до сих пор, и к тому же заключает в себе первые серьезные намеки на принципиальную осуществимость проекта. Управляемый термоядерный синтез Есть два основных типа ядерных реакций, которые идут с выделением энергии, — это расщепление тяжелых ядер например, урана или плутония и слияние легких ядер обычно дейтерия и трития — тяжелых изотопов водорода, рис. Энергия, получаемая при расщеплении — это то, что обычно называется ядерной энергией, именно на ней работают атомные электростанции. Энергия, получаемая при слиянии, называется термоядерной энергией, а сам процесс — термоядерным синтезом. Энергетический выход термоядерной реакции существенно выше, чем у ядерного топлива, однако приручить этот тип энергии пока не удалось. Конечно, существуют атомные бомбы, работающие по обоим принципам, но их взрыв представляет собой неуправляемую реакцию, и для целей добычи энергии он не подойдет. Классическая реакция термоядерного синтеза: ядра дейтерия и трития сливаются друг с другом с образованием альфа-частицы и свободного нейтрона и с выделением энергии. Рисунок из статьи M. Herrmann, 2014. Plasma physics: A promising advance in nuclear fusion Большинство специалистов связывают основные надежды по достижению управляемого термоядерного синтеза с магнитными ловушками , и прежде всего с международным проектом ITER для первого серьезного знакомства можно порекомендовать лекцию Кристофера Ллуэллин-Смита На пути к термоядерной энергетике. Но параллельно с этим уже давно разрабатывается и другая схема для запуска управляемой термоядерной реакции — инерциальный термоядерный синтез. Она еще не так развита, как термояд с магнитным удержанием, но некоторые специалисты надеются, что именно на этом пути будет получен первый удобный источник термоядерной энергии. Принцип работы инерциального термоядерного синтеза звучит просто. Берем маленькую капсулу с дейтериево-тритиевой смесью и резко сжимаем ее, например, с помощью сверхмощного лазерного импульса. Капсула от такого сжатия сильно нагревается, и в самом ее центре в условиях высоких температур и давлений зажигается термоядерная реакция. Выделяющаяся энергия разогревает остальную часть дейтериево-тритиевого горючего, и термоядерная реакция охватывает всю капсулу. Подставляя всё новые и новые капсулы под лазерный луч, мы получаем постоянное производство энергии. К сожалению, техническая реализация этой простой идеи неимоверно сложна. Трудности здесь, в основном, технического характера прежде всего, неустойчивости при сжатии капсулы , но преодолеть их пока не получается. Для той же установки NIF моделирование показывает, что термоядерная реакция вроде бы должна при нынешних параметрах запускаться без проблем, но физикам до сих пор не удавалось не только выйти на этот режим, но и даже приблизиться к нему. Главный результат новых публикаций NIF заключается как раз в том, что эмпирическим путем был подобран такой режим работы, при котором по крайней мере одна трудность была преодолена, и стали появляться первые намеки на настоящую термоядерную реакцию с хорошим энергетическим выходом.

Вестник РАН, 2021, T. 91, № 5, стр. 470-478

Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.

Похожие новости:

Оцените статью
Добавить комментарий