Новости гелий 3 на луне

Просмотр в реальном времени Новости космоса и астрономии Россия будет добывать гелий-3 на Луне. Хотя гелий-3 расположен в поверхностном слое, концентрация его в нем очень низкая. Причем на Луне гелий-3 находится лишь в поверхностном слое и имеет солнечное происхождение, а Луна играет роль ловушки для солнечного ветра. Что касается доставки гелия-3 на Землю, то в этом могут помочь SpaceX или Blue Origin, которую ранее возглавлял Мейерсон.

Индия хочет обеспечить Землю дешевой энергией, полученной из лунного гелия-3

Содержание Гелия 3 на Луне в 10 тысяч раз выше, чем на Земле. Гелий-3 — это газ, который потенциально может быть использован в качестве топлива для будущих термоядерных электростанций, но крайне редко встречается на Земле, хотя в изобилии существует на Луне. Образование гелия-3: гелий формируется на Солнце, космическое излучение превращает гелий в гелий-3, атмосфера Земли и ее магнитное поле отбрасывают гелий-3, гелий-3 концентрируется на Луне. Индия намерена стать лидером по добыче изотопа гелия-3, который в изобилии имеется на Луне и может стать перспективным источником энергии для Земли. Хотя гелий-3 расположен в поверхностном слое, концентрация его в нем очень низкая. Radia Windrunner который вскоре станет самым большим грузовым самолётом в мире и Стартап Interlune который собирается добывать безумно дорогой гелий-3 на Луне.

СМИ: Россия планирует добывать полезные ископаемые на Луне

На Земле нет месторождений гелия-3 На Земле нет месторождений гелия-3, но его выделяют в небольших количествах при распаде трития. Газ используется в медицинском оборудовании. На Луне, по подсчетам специалистов, находится до 10 млн тонн гелия-3. Экономике США требуется в год 40 тонн, для того чтобы полностью удовлетворить свои потребности в энергии.

Через пару лет - в 2028-м - Interlune планирует построить первый завод по добыче ресурса на естественном спутнике Земли. Доставку гелия-3 на Землю предполагается начать в 2030 году. По данным издания ArsTechnica, в верхних слоях лунной поверхности содержится примерно 1 млн тонн гелия-3, тогда как производство одного грамма этого ресурса может потребовать переработки сотен тонн реголита.

При этом план компании достаточно дорогостоящий и осуществить его не получится в одиночку. Interlune придется создать все оборудование, необходимое для масштабной добычи гелия-3, оплатить его запуск на Луну, а также заключить контракт с одной из компаний на возврат добытых ресурсов. Кроме того, пока не определена точная стоимость добычи одного грамма гелия-3. Стартап Interlune возглавляют опытные представители космической индустрии. Ее гендиректор — экс-президент Blue Origin Роб Мейерсон. Основали Interlune примерно три года назад, но только сейчас стало известно, чем он занимается. Конкуренцию Interlune в добыче гелия-3 может составить Китай, который уже имеет первые успехи в этой сфере.

Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники. В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа — ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут. В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. Другое направление на пути к управляемой термоядерной реакции — это лазерный термоядерный синтез ЛТС. Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении. Расчеты показывают, что при определенных условиях в оптической мишени происходит концентрация энергии, при которой могут возникнуть условия, необходимые для термоядерной реакции. То государство, которое освоит технологии термоядерного синтеза эту технологию раньше других, получит огромные преимущества перед другими. Для того, чтобы Россия не осталась на задворках цивилизации и приняла участие в разработке этих проектов, нужна политическая воля руководства государства, примерно как это было с советскими ядерным и космическим проектами в середине ХХ века. На Земле этот изотоп практически отсутствует, в недрах планеты его не более нескольких сотен килограммов. По словам Галимова, гелий-3 "является идеальным экологически чистым топливом для термоядерного синтеза". Гелий-3 на Луну в течение миллиардов лет приносит солнечный ветер, пояснил Галимов.

Китай находит гелий-3 на Луне: начинается великая гонка

Так считает ученый-геолог, бывший астронавт и сенатор Харрисон Шмитт, участник экспедиции «Аполлон-17». Для этого американцам необходимо вернуться на Луну и построить там станцию для добычи гелия-3. Идея Шмитта не нова, однако он считает, что разработал первый реальный план добычи гелия-3 в качестве ядерного топлива. Для этого потребуется 15 миллиардов долларов. Треть суммы нужна для создания экспериментальной добывающей базы. Сумма столь высока в связи с тем, что пока не существует даже рабочего прототипа.

Однако на Луне атмосферы и магнитного щита нет, так что на ее поверхность постоянно падает множество высокоэнергетических частиц. По предварительным оценкам, на Луне около 1,2 млн тонн гелия-3. Этот редкий изотоп способен обеспечить потребность в чистой энергии и заложить основу многомиллиардной промышленности. В недавнем пресс-релизе стартап Interlune заявляет , что обладает технологией, позволяющей добывать гелий-3 эффективно и бережно. Впрочем, Interlune — не единственная организация, положившая глаз на лунные запасы гелия-3. Добыча природных ресурсов — составная часть лунной программы «Артемида».

Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. Цена же выведения на орбиту одного подобного завода составляет 10 млн. Стали уже привычными слова, что наукоемкие отрасли ядерная, космическая и др. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники. В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа — ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут. В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. Другое направление на пути к управляемой термоядерной реакции — это лазерный термоядерный синтез ЛТС. Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении. Расчеты показывают, что при определенных условиях в оптической мишени происходит концентрация энергии, при которой могут возникнуть условия, необходимые для термоядерной реакции. То государство, которое освоит технологии термоядерного синтеза эту технологию раньше других, получит огромные преимущества перед другими.

Как ранее писал Лайф, в течение ближайших пяти лет на Луну собираются отправить три аппарата. Один из них — "Луна-25" — займётся поисками водяного льда на южном полюсе, ещё один — "Луна-27" — возьмёт пробы грунта. Стоит отметить, что ещё в 2006 году в ракетно-космической корпорации "Энергия" говорили, что главной целью России на Луне будет разработка гелия-3.

» Сокровище Луны – гелий-3

Новые сверхдержавы родятся на Луне Камень Чанъэ дает надежду на то, что на Луне действительно много гелия-3, который потенциально можно будет использовать для атомной энергии нового поколения.
Новые сверхдержавы родятся на Луне Что касается доставки гелия-3 на Землю, то в этом могут помочь SpaceX или Blue Origin, которую ранее возглавлял Мейерсон.
Американский стартап Interlune намерен запустить добычу гелия-3 на Луне к 2030 году При этом изотоп гелий-3 на Земле практически отсутствует, а на Луне его запасы смогли сформироваться из-за того, что лунная поверхность подвергается постоянному воздействию солнечного ветра.
Один из стартапов планирует добычу гелия-3 на Луне эта добыча природных ископаемых на Луне может решить энергетический кризис, обеспечив человечество энергией на 10 000 лет впере.

Энергетика на Гелие-3

Космонавтика Для добычи гелия-3 нужно будет переработать прямо на спутнике миллионы тонн лунного грунта (даже при условии, что на Луне изотопа сильно больше, чем на Земле, его содержание все равно не больше 0,01 г на тонну).
На Луне редчайший Гелий-3, и человечество мечтает его добывать. Как и зачем Для добычи гелия-3 на Луне предлагается использовать специальные роботы-шахтеры, которые будут добывать грунт и извлекать из него гелий-3.

Пациент Neuralink играет в шахматы мыслью, Добыча ГЕЛИЯ-3 на ЛУНЕ, Новое обновление робота H1

Для добычи гелия-3 нужно будет переработать прямо на спутнике миллионы тонн лунного грунта (даже при условии, что на Луне изотопа сильно больше, чем на Земле, его содержание все равно не больше 0,01 г на тонну). Российские геохимики провели исследование и обнаружили на Луне богатые месторождения изотопов гелия. Добыча гелия-3 потребовала бы астрономические суммы для организации на Луне горнодобывающей и перерабатывающей промышленности. Камень Чанъэ дает надежду на то, что на Луне действительно много гелия-3, который потенциально можно будет использовать для атомной энергии нового поколения.

Один из стартапов планирует добычу гелия-3 на Луне

Стартап Interlune, созданный бывшими руководителями Blue Origin, заявил о планах по добыче на Луне редкого гелия-3. Для добычи гелия-3 на Луне предлагается использовать специальные роботы-шахтеры, которые будут добывать грунт и извлекать из него гелий-3. Нельзя не упомянуть, что затраты на строительство добывающей гелий-3 шахты на Луне будут поистине астрономическими.

Похожие новости:

Оцените статью
Добавить комментарий