Открытие исследователей: проблема ложного вакуума доказана на практике Международная группа ученых достигла прорыва в изучении распада ложного вакуума, что было подтверждено экспериментально. В глобальной паутине появился видеоролик, на котором сотрудники научного мира проинформировали о вероятном механизме уничтожения галактик Вселенной, что происходит в результате распада ложного вакуума. В чистом виде распад ложного вакуума в основное состояние происходит за счет квантово-вакуумных флуктуаций.
Ученые рассказали о смерти Вселенной из-за распада вакуума
Кушкуль г. Оренбург; «Крымско-татарский добровольческий батальон имени Номана Челебиджихана»; Украинское военизированное националистическое объединение «Азов» другие используемые наименования: батальон «Азов», полк «Азов» ; Партия исламского возрождения Таджикистана Республика Таджикистан ; Межрегиональное леворадикальное анархистское движение «Народная самооборона»; Террористическое сообщество «Дуббайский джамаат»; Террористическое сообщество — «московская ячейка» МТО «ИГ»; Боевое крыло группы вирда последователей мюидов, мурдов религиозного течения Батал-Хаджи Белхороева Батал-Хаджи, баталхаджинцев, белхороевцев, тариката шейха овлия устаза Батал-Хаджи Белхороева ; Международное движение «Маньяки Культ Убийц» другие используемые наименования «Маньяки Культ Убийств», «Молодёжь Которая Улыбается», М. Казань, ул. Торфяная, д. Самары; Военно-патриотический клуб «Белый Крест»; Организация - межрегиональное национал-радикальное объединение «Misanthropic division» название на русском языке «Мизантропик дивижн» , оно же «Misanthropic Division» «MD», оно же «Md»; Религиозное объединение последователей инглиизма в Ставропольском крае; Межрегиональное общественное объединение — организация «Народная Социальная Инициатива» другие названия: «Народная Социалистическая Инициатива», «Национальная Социальная Инициатива», «Национальная Социалистическая Инициатива» ; Местная религиозная организация Свидетелей Иеговы г.
Если однажды некоторое квантовое событие заставит поле Хиггса устремиться к стабильному состоянию, это может привести к необратимому цепному процессу — вакуумному распаду, сообщают учёные.
Это, в свою очередь, приведёт к тому, что по космосу с огромной скоростью начнёт распространяться сфера так называемого «истинного вакуума», внутри которой не будут работать даже привычные нам законы физики из-за нарушения Стандартной модели. Гипотетически такое поле могло бы уничтожить Землю за долю секунды, и предотвратить это было бы невозможно. Более того, учёные не исключают, что где-то в далёком космосе такой процесс уже мог стартовать — хотя если это произошло достаточно далеко, Землю от последствий защитит тот факт, что Вселенная непрерывно расширяется.
Времена распадов ложного вакуума в сравнении с теорией инстантонов. Компьютерное моделирование совпало с экспериментальными результатами, что по мнению ученых доказывает наблюдение распада ложного вакуума в истинный. Физики отмечают, что предложенный ими метод позволит подробнее изучить распад ложного вакуума квантовых состояний.
А при развитии второго варианта будет происходить переход в глубокий, а может даже, истинный вакуум.
В презентованном учеными ролике спроектирована модель второго сценария развития ситуации. Исследователи специально показали поэтапно, как будет происходить процесс распада вакуума, чтобы даже простые люди, живущие на нашей планете, которые не являются светилами науки, смогли это понять.
Ученые предрекли гибель Вселенной и в доказательство представили видеоролик
NP: процесс распада ложного вакуума впервые наблюдали в бозе-конденсатеИзображение: Nature Physics (2024) / дународная группа ученых получила первые экспериментальные доказательства распада ложного вакуума. Результаты исследования. **Ученые из Великобритании впервые применили квантовый симулятор для просчета. Некоторые теоретики предсказывают, что в определенных ситуациях распад ложного вакуума может ускоряться. Профессор Ян Мосс и доктор Том Биллам из Университета Ньюкасла убедительно продемонстрировали, что эти пузырьки возникают в результате термически активированного распада вакуума. Фото из открытых источников Англо-итальянская команда учёных достигла значительного прогресса в изучении явления распада ложного вакуума.
Разрушение пустоты: могут ли физики случайно уничтожить Вселенную
В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина. Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна. Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля.
Хотя обе ямки разделяет высокий потенциальный барьер, поле может протуннелировать через него и свалиться в более выгодное состояние, лежащее в области гораздо больших энергий порядка 1012 тераэлектронвольт. Поэтому наш вакуум считается «ложным», то есть не отвечающим настоящему минимуму поля Хиггса. Как предсказывает теория, в некоторых случаях может произойти спонтанный переход Вселенной из ложного вакуума в истинный так называемый «распад ложного вакуума» , при этом будет выделяться огромная энергия. Обычно этот переход описывают как спонтанное образование пузырьков истинного вакуума в ложном. При благоприятных условиях эти пузыри будут бесконечно расширяться, а при неблагоприятных — схлопываться.
Это напоминает кипение воды, только вместо пузырьков пара мы имеем дело с истинным вакуумом. В частности, именно поэтому некоторые люди боятся экспериментов на LHC — они считают, что эти эксперименты могут вызвать подобный переход.
Энергия E выше, чем в состоянии истинного вакуума основное состояние , но потенциальный барьер препятствует переходу поля. Такое состояние стабильно в течение определённого времени метастабильно , но может « туннелировать » в состояние истинного вакуума. В одной из гипотез « раздувающейся Вселенной » из ложного вакуума вскоре после появления Вселенной могла образоваться не одна, а множество метагалактик в том числе и наша [2] , в таком случае Большой взрыв — переход ложного вакуума в обычный [3].
Примечательно, утверждают в университете, что ученые занимаются изучением тайн наиболее горячей и плотной материи мироздания. Фото: Pixabay Делают они это с помощью очень маленьких атомов, которые к тому же очень холодны. При этом, интерес исследователей к «ложному вакууму» возник очень давно.
Они пытаются определить его свойство и выяснить, могут ли существовать параллельные миры и не находится ли при этом наша Вселенная под угрозой.
Конец Вселенной: ученые показали, к чему приведет распад вакуума
Отмечается, что первопричиной вселенской катастрофы вполне может стать распад вакуума Ученые поведали о вероятной смерти мира, которая случится после распада ложного вакуума Ученые рассказали, что. В глобальной паутине появился видеоролик, на котором сотрудники научного мира проинформировали о вероятном механизме уничтожения галактик Вселенной, что происходит в результате распада ложного вакуума. Возможно, мы застанем распад ложного вакуума. В результате распада ложного вакуума огромная энергия, запасенная полем, высвободится — в конечном счете, это выразится в образовании большого числа частиц и приведет к повторному разогреванию Вселенной. Многие российские СМИ новости вроде «Физики увидели распад ложного вакуума». Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили.
Вакуумный распад: конец света уже наступил?
Если это ложный вакуум, то его самопроизвольный распад произойдет намного позже естественной смерти Солнца. Результаты эксперимента соответствовали численным моделям и подтверждали квантово-механическую природу распада ложного вакуума. 3. Vacuum Catastrophe (распад ложного вакуума). Вполне возможно, что наш вакуум — ложный, то есть наша пустота не является низшим состоянием вакуума (в энергетическом смысле).
Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума
Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу. Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. Пузырение: в лаборатории квантовых газов в Тренто команда создала сверхтекучую спиновую смесь атомов натрия в состоянии ложного вакуума (синий) и наблюдала и изучала ее распад до состояния истинного вакуума (красный) посредством образования спиновых пузырей. В этом видео поговорим о космической пустоте, о распаде ложного вакуума, о том насколько такое событие вероятно, и как это может произойти.
Физики показали гибель Вселенной вследствие распада вакуума - ГТРК Удмуртия
Накануне ученые опубликовали видеоролик, который демонстрирует публике вероятный сценарий гибели Вселенной. Как утверждают исследователи, наша вселенная находится в ложном или истинном вакуумном состоянии. Основное отличие двух этих состояний заключается в том, что истинное является минимальным значением всех энергий и практически полным отсутствием частиц и полей и как раз таки называется вакуумом, а ложное — минимальное, однако не настолько, то есть, существуют вакуумы и со значительно более низкими значениями.
Результаты, опубликованные в журнале Nature Physics, предлагают экспериментальные доказательства образования пузырей в результате распада ложного вакуума в квантовой системе. Результаты подтверждаются как теоретическим моделированием, так и численными моделями, подтверждающими квантово-полевую природу распада и его термическую активацию, открывая путь к моделированию неравновесных явлений квантового поля в атомных системах. При этой температуре пузыри появляются по мере распада вакуума, и профессор Университета Ньюкасла Ян Мосс и доктор Том Биллам смогли убедительно показать, что эти пузыри являются результатом термически активированного распада вакуума.
В физике элементарных частиц распад бозона Хиггса в вакууме изменил бы законы физики, вызвав то, что было описано как «окончательная экологическая катастрофа» — говорит Ян Мосс, профессор теоретической космологии в Школе математики, статистики и физики Университета Ньюкасла.
Но инфляция никогда не закончится полностью, во всей Вселенной. Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время.
Выходит, Большой взрыв не был уникальным событием в нашем прошлом. Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией.
Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды.
То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума. Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей.
Мы живем в одном из них и видим только малую его часть. К сожалению, путешествия в другие пузыри невозможны. Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря.
Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных.
Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта.
Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов.
Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно? Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние.
Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150.
Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно. Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз.
В частности, существует бесконечное число земель с такими же историями, как у нашей. Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации.
Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим. Эта картина может показаться несколько угнетающей, но ее очень трудно избежать, если признается теория инфляции.
Но это необязательно должно быть так. Свойства нашего мира определяются набором чисел, называемых фундаментальными постоянными. Среди них Ньютонова гравитационная постоянная, массы элементарных частиц, их электрические заряды и тому подобное.
Всего существует около 30 таких констант, и возникает вполне естественный вопрос: почему у них именно такие значения, которые есть? Долгое время физики мечтали, что однажды смогут вывести значения констант из некой фундаментальной теории. Но существенного прогресса на этом пути достигнуто не было.
Если выписать на листок бумаги значения известных фундаментальных постоянных, они покажутся совершенно случайными. Некоторые из них очень малы, другие велики, и за этим набором чисел не просматривается никакого порядка. Однако в них все же была замечена система, хотя и несколько иного рода, чем надеялись обнаружить физики.
Значения констант, похоже, тщательно «подобраны» для обеспечения нашего существования. Это наблюдение получило название антропного принципа. Константы будто специально тонко настроены Творцом, чтобы создать подходящую для жизни Вселенную — это как раз то, о чем говорят нам сторонники учения о разумном замысле.
Но существует иная возможность, рисующая совсем другой образ Творца: он произвольным образом порождает множество вселенных, и чисто случайно некоторые из них оказываются пригодными для жизни. Появившиеся в таких редких вселенных разумные наблюдатели обнаруживают чудесную тонкую настройку констант.
Однако водная аналогия не идеальна. Двигаясь сквозь толщу воды, вы замедляетесь, и если перестанете прикладывать усилия, то совсем остановитесь. Что касается массивных частиц, то их скорость не снижается по мере взаимодействия с полем Хиггса. В вакууме любой объект стремится продолжать делать то, что он делает.
Массивные частицы, как правило, путешествуют по Вселенной на очень высоких хотя и досветовых скоростях. Основное различие между массивными и безмассовыми частицами заключается в том, что массивным частицам, движущимся в вакууме, для ускорения требуется толчок, тогда как безмассовые частицы перемещаются со скоростью света без всяких усилий. На самом деле, безмассовые частицы просто не могут двигаться медленнее скорости света. Поэтому нам следует сказать спасибо, что поле Хиггса нарушило электрослабую симметрию, в противном случае мы не имели бы возможности просто спокойно посидеть. Поле Хиггса не только позволило частицам обрести массу, но и определило некоторые из фундаментальных физических констант, в том числе заряд электрона и значения масс частиц. То физическое состояние, в котором мы существуем, называется «вакуумом Хиггса» или «вакуумным состоянием».
Если бы поле Хиггса имело какое-то другое значение или симметрия нарушилась как-то иначе, мы, вероятно, вообще не могли бы существовать. Мы находимся во Вселенной, где массы и заряды частиц идеально подходят для того, чтобы частицы объединялись в молекулы, формировали сложные структуры и обеспечивали химические процессы, поддерживающие жизнь. Если бы поле Хиггса имело другое значение, такое деликатное равновесие, вероятно, не было бы достигнуто, что сделало бы невозможным формирование этих связей. Своим материальным существованием мы обязаны тому факту, что поле Хиггса остановилось на нужном значении. И тут возникают некоторые риски. Эксперименты, проводимые на ускорителе БАК с целью воссоздания экстремальных условий ранней Вселенной, помогают нам не только лучше изучить существующие законы физики, но и понять, какими они могли бы быть при других обстоятельствах.
В 2012 году, когда физикам наконец удалось создать бозон Хиггса в результате столкновения частиц, измерение его массы позволило получить недостающий фрагмент для завершения Стандартной модели физики элементарных частиц. Благодаря этому мы узнали не только о текущем значении поля Хиггса, но и обо всех возможных значениях, которые оно могло бы принять, появись у него такая возможность. Хорошая новость: измеренная масса бозона Хиггса полностью соответствует хорошо обоснованной и математически последовательной формулировке Стандартной модели, которая до сих пор с блеском выдерживала все экспериментальные испытания. Плохая новость: последовательная Стандартная модель также говорит нам о том, что наш вакуум Хиггса — идеально сбалансированный набор законов, управляющих физическим миром, — нестабилен. В таком случае дни нашего прекрасного космоса, судя по всему, сочтены. Шаткое положение космоса Идея о том, что наш вакуум может оказаться нестабильным, не нова.
Уже в 1960-х и 1970-х годах физики писали статьи о возможном и катастрофическом для Вселенной процессе распада, способном уничтожить жизнь какой мы ее знаем, и любую возможность существования организованной материи. В то время распад вакуума был просто идеей, с которой можно забавляться в уравнениях, не имея никаких подтверждающих ее экспериментальных данных. Сейчас все иначе. Чтобы разобраться с распадом вакуума, сначала нужно познакомиться с концепцией потенциала, математической конструкцией, описывающей то, как может измениться значение поля и где оно «предпочитает» находиться. Поле Хиггса можно представить в виде камешка, катящегося по склону долины. Форма этого склона и есть потенциал.
Подобно тому, как камешек стремится оказаться на дне долины, поле Хиггса будет искать состояние с самой низкой энергией, соответствующее наименьшему значению потенциала, и остановится на нем, если ему ничто не помешает. Потенциал можно изобразить в виде U-образной кривой, нижняя часть которой соответствует этой самой долине. Нарушение электрослабой симметрии привело к возникновению потенциала, управляющего полем Хиггса, и, как мы думаем, это поле благополучно обосновалось на дне долины. Проблема в том, что истинное дно может находиться в гораздо более низкой части потенциала и соответствовать другому вакуумному состоянию. Представьте себе наклоненную округлую W-образную кривую, одна из долин которой расположена ниже той, в которой в настоящее время находится поле Хиггса. Если потенциал Хиггса имеет второй, более низкий минимум, то это превращает его из хорошей математической конструкции в экзистенциальную угрозу для всего космоса.
В каком бы месте своего потенциала в данный момент ни находилось поле Хиггса, оно дает нам вполне приемлемую, удобную Вселенную. У нас есть физические константы, которые позволяют частицам организовываться в твердые жизнеспособные структуры. Если его потенциал имеет еще один, более низкий минимум, все сущее находится под угрозой. Потенциал поля Хиггса с состоянием ложного вакуума. Каждый минимум потенциала соответствует возможному состоянию вселенной. Наше поле Хиггса находится в более высоком минимуме ложный вакуум , оно может перейти в другое состояние истинный вакуум в результате высокоэнергитического события отмеченного на диаграмме словом "флуктуации" или путем квантового туннелирования.
Если наша Вселенная находится в ложном вакууме, переход поля Хиггса в состояние истинного вакуума будет настоящей катастрофой. В такой ситуации вакуум Хиггса можно назвать лишь метастабильным. То есть он стабилен только до определенного момента. Поле застряло в минимуме потенциала, который на самом деле больше напоминает не дно долины, а небольшое углубление в ее склоне. Поле может оставаться там в течение длительного времени — достаточного для возникновения галактик, рождения звезд, эволюции жизни, а также для производства бесчисленного количества никому не нужных фильмов о супергероях, однако существует вероятность, что достаточно сильное возмущение способно перебросить его через край, после чего ему уже ничто не помешает найти истинный минимум потенциала. И такое развитие событий было бы апокалиптически плохим по причинам, которые мы обсудим далее во всех кровавых подробностях.
К сожалению, лучшие из имеющихся у нас данных, полностью соответствующих Стандартной модели физики элементарных частиц, позволяют предположить, что наше поле Хиггса в настоящее время находится именно в таком углублении. Это метастабильное состояние также называется «ложным вакуумом» в отличие от «истинного» вакуума, который соответствует самому нижнему минимуму потенциала. Что плохого в том, чтобы находиться в ложном вакууме? Вполне возможно, что все. Ложный вакуум в лучшем случае представляет собой лишь временную отсрочку для окончательного разрушения. В ложном вакууме законы физики, в том числе сама возможность существования частиц, зависят от деликатного баланса, который в любой момент может быть нарушен.
Это событие называется распадом вакуума. Оно происходит быстро, чисто, безболезненно и способно уничтожить абсолютно все. Квантовый пузырь смерти Для того чтобы распад вакуума произошел, его должно что-то спровоцировать, то есть заставить поле Хиггса отправиться на поиски предпочтительного для него минимума потенциала, соответствующего «истинному» вакууму. Таким триггером может послужить сверхмощный взрыв, катастрофическое испарение черной дыры или злосчастное квантовое туннелирование о котором мы поговорим подробнее чуть позже. Если в любой точке космоса произойдет что-то подобное, будет запущен целый каскад апокалиптических событий, которому ничто во Вселенной не сможет противостоять. Все начнется с возникновения пузыря.
На месте события-триггера образуется крошечный пузырь истинного вакуума. Он будет заключать в себе совершенно иной вид пространства, в котором физические процессы подчиняются другим законам, а частицы обладают иными свойствами. В момент формирования этот пузырь представляет собой бесконечно малое пятнышко. Однако он окружен чрезвычайно высокоэнергетической стенкой, способной сжечь все, с чем соприкоснется. Затем пузырь начнет расширяться. Поскольку истинный вакуум является более стабильным состоянием, Вселенная его «предпочитает» и переходит в него при первой же возможности, подобно тому, как камешек скатывается по склону, оказавшись на его вершине.
Как только возникнет этот пузырь, поле Хиггса вокруг него внезапно опустится в истинный минимум. Исходное событие как бы выводит из шаткого равновесия все камешки, расположенные в непосредственной близости, что вызывает сход лавины. Все большая часть пространства начнет переходить в состояние истинного вакуума. Все, чему не повезет оказаться на пути расширения пузыря, сначала столкнется с его высокоэнергетической стенкой, движущейся почти со скоростью света, а затем подвергнется процессу, который можно назвать «тотальной диссоциацией», поскольку силы, которые ранее удерживали частицы вместе в атомах и ядрах, перестанут функционировать. То, что вы не увидите приближения этой стенки, вероятно, к лучшему. Каким бы драматичным ни выглядело вышеприведенное описание, если вы окажетесь на пути расширения пузыря, вы этого не заметите.
То, что движется на вас со скоростью света, для вас невидимо, — любой намек, предупреждающий о приближении пузыря, достигнет вас одновременно с ним. Вы никак не сможете узнать о том, что на вас что-то надвигается, или просто заметить малейший признак опасности. Если пузырь приблизится к вам снизу, то в течение пары наносекунд с момента исчезновения ваших ног вы все еще будете их видеть. К счастью, этот процесс совершенно безболезненный: ни на каком этапе ваши нервные импульсы не смогут угнаться за процессом вашего распада. Хотя бы этому можно порадоваться. Разумеется, вами пузырь не ограничится.
Любую планету или звезду, оказавшуюся в пределах его постоянно расширяющегося радиуса, постигнет та же участь. Целые галактики будут уничтожены. Истинный вакуум полностью обнулит всю Вселенную. Уцелеют лишь те области, которые в силу своей удаленности навсегда останутся за горизонтом пузыря благодаря ускоренному расширению космического пространства. Пузырь истинного вакуума. Если распад вакуума произойдет в каком-то месте космоса, это событие породит пузырь, расширяющийся во все стороны со скоростью света и уничтожающий всё на своем пути.
На самом деле вполне возможно, что пока мы тут сидим и спокойно пьем чай, распад вакуума где-то уже происходит. Может быть, нам повезло, и пузырь находится за пределами нашего космического горизонта, поглощая галактики, о которых мы ничего не знаем. А может быть, он произошел по космическим меркам прямо по соседству, и уже тихо подкрадывается, чтобы застать нас врасплох.
Как распад вакуума может уничтожить Вселенную
С такого пузыря начинается квантовый распад ложного вакуума в теориях с неравноправными вакуумами В квантовом мире существует такое явление как туннелирование. Так называют перемещение квантовой частицы, которое было бы невозможно в рамках классической механики. Например, пусть у нас есть двойная потенциальная яма, в которой один минимум чуть глубже другого рис. Классическая механика говорит, что если частицу положить на дно менее глубокой ямы, то она так навсегда и останется там лежать. Квантовая же механика предсказывает, что частица не будет там находиться вечно: спустя некоторое время ее можно уже будет найти в более глубоком минимуме. Она протуннелировала несмотря на то, что ее энергии недостаточно для спокойного перемещения поверх потенциального барьера, разделяющего два минимума. Частица в потенциале с двумя разными минимумами.
В классической механике частица может вечно покоиться в менее глубоком минимуме слева ; в квантовой механике через какое-то время произойдет туннелирование частицы в более глубокий минимум справа Оказывается, нечто аналогичное может происходить и с вакуумом. В квантовой теории поля вакуум — это состояние поля с наинизшей относительно умеренно больших отклонений энергией. Для обычных частиц или полей вакуумное состояние — это просто отсутствие каких-либо частиц. Хиггсовское поле особенное, у него энергетически наивыгодное состояние может быть вовсе не пустое. Вселенная в результате этого оказывается заполнена однородным хиггсовским полем. Подробнее см.
Простейший вариант такой ситуации — это «хиггсовское» поле h r с такой плотностью потенциальной энергии его еще называют «потенциал» : Здесь r — это трехмерная пространственная координата, v — некоторая величина размерности энергии для настоящего хиггсовского поля она примерно равна 246 ГэВ. Минимальной энергия будет тогда, когда во всём пространстве поле h r будет равно константе: v или —v. Любое изменяющееся в пространстве поле обязательно приведет в целом к большей энергии. Высота потенциального барьера, разделяющего два минимума, равна Рис. В некоторых хиггсовских механизмах может возникнуть ситуация с двумя неравноправными вакуумами. Но оказывается, в неминимальных вариантах хиггсовского механизма возможна ситуация, напоминающая рис.
В них потенциал чуть-чуть перекошен «в пользу» одного из минимумов рис. Теперь самый важный момент.
Ранее новорожденных белых акулят никто не видел, хотя ученые давно подозревали, что воды у калифорнийского побережья служат родильным домом для белых акул. Как выяснилось, всего 100 каланов в одном эстуарии на севере Калифорнии могут настолько хорошо регулировать численность роющих крабов, что скорость береговой эрозии падает в четыре раза. Эта связь была подтверждена наблюдениями, экспериментами и моделированием. Им стала горячая суперземля , железное ядро которой занимает почти весь объем планеты.
Она обращается вокруг красного карлика и не имеет атмосферы. Для этого они измеряли намагниченность в бозе-конденсате атомов изотопа натрия-23 и наблюдали за образованием пузырьков истинного вакуума.
Ученые утверждают, что данный процесс займет слишком много времени, чтобы угрожать современной человеческой цивилизации. Ранее британские ученые рассказали , когда на Земле наступит новый ледниковый период.
Теперь мысленно увеличьте эту поверхность в огромное число раз. Это как раз то, что случилось со Вселенной во время инфляции. Нам видна лишь крошечная часть этой огромной сферы. И она кажется плоской точно так же, как Земля, когда мы рассматриваем небольшой ее участок. То, что геометрия Вселенной плоская, было проверено путем измерения углов гигантского треугольника размером почти до космического горизонта. Их сумма составила 180 градусов, как и должно быть при плоской, евклидовой, геометрии. Теперь, когда данные, полученные в наблюдаемой нами области Вселенной, подтвердили теорию инфляции, можно в какой-то степени доверять тому, что она говорит нам о регионах, недоступных для наблюдения. Это возвращает нас к вопросу, с которого мы начали: что лежит за нашим космическим горизонтом? То там, то здесь в ее толще случаются «большие взрывы», в которых распадается ложный вакуум и возникает область космоса, подобная нашей. Но инфляция никогда не закончится полностью, во всей Вселенной. Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время. Выходит, Большой взрыв не был уникальным событием в нашем прошлом. Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией. Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды. То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума. Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей. Мы живем в одном из них и видим только малую его часть. К сожалению, путешествия в другие пузыри невозможны. Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря. Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных. Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта. Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов. Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно? Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние. Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150. Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно. Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз. В частности, существует бесконечное число земель с такими же историями, как у нашей. Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации. Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим. Эта картина может показаться несколько угнетающей, но ее очень трудно избежать, если признается теория инфляции. Но это необязательно должно быть так. Свойства нашего мира определяются набором чисел, называемых фундаментальными постоянными. Среди них Ньютонова гравитационная постоянная, массы элементарных частиц, их электрические заряды и тому подобное. Всего существует около 30 таких констант, и возникает вполне естественный вопрос: почему у них именно такие значения, которые есть? Долгое время физики мечтали, что однажды смогут вывести значения констант из некой фундаментальной теории.
Распад вакуума уничтожит Вселенную
Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума | Недавно некоторые СМИ сообщили, что ученые впервые наблюдали распад ложного вакуума. |
Ученые рассказали о смерти Вселенной из-за распада вакуума | Сложность вызова события, обладающего достаточно высокой энергией для инициирования распада вакуума, обусловлена высотой потенциального барьера между ложным и истинным вакуумом. |
Распад ложного вакуума
Позитроны укажут на распад вакуума при столкновении тяжёлых ионов | Опубликовано в журнале Физика природы Полученные результаты дают экспериментальные доказательства образования пузырьков в результате ложного распада вакуума в квантовой системе. |
Физики из Британии впервые воспроизвели процесс распада «ложного вакуума» | 3. Vacuum Catastrophe (распад ложного вакуума). Вполне возможно, что наш вакуум — ложный, то есть наша пустота не является низшим состоянием вакуума (в энергетическом смысле). |
Открытие распада ложного вакуума: ученые получили доказательства | На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает |
Как Вселенная разрушится от распада вакуума? | Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. |
Физики из Британии впервые воспроизвели процесс распада «ложного вакуума»
По мнению Вагнера, это была отчаянная попытка спасти мир. Разумеется, его иск был обречен на провал. Во-вторых, переживания Вагнера, пусть и искренние, были совершенно необоснованными. В конце концов, руководство ЦЕРН выпустило несколько пресс-релизов, чтобы заверить общественность в безопасности используемых технологий, после чего строительство и эксплуатация БАК были возобновлены. Но это не помогло предотвратить рост панических настроений среди некоторых слоев населения по мере приближения даты первых запланированных испытаний. БАК был создан для проведения самых мощных в истории экспериментов в области физики элементарных частиц, предполагающих столкновение протонов в четырех местах гигантской круглой охлажденной вакуумной трубы, длина окружности которой составляет около 27 километров.
Эти столкновения внутри детекторов должны сопровождаться всплесками энергии, мощность которых достаточна для воссоздания условий Горячего Большого взрыва, имевших место спустя всего несколько наносекунд после рождения Вселенной. Ученые надеялись, что БАК поможет лучше изучить не только условия ранней Вселенной, но и саму структуру материи и энергии. Более ранние эксперименты показали, что законы физики энергозависимы, то есть поведение частиц и действие сил зависит от окружающих условий, поэтому столкновение частиц высоких энергий позволило бы ученым исследовать границы нашего понимания законов физики. Однако в поле зрения ученых маячил и более заманчивый приз. До этого физики на протяжении десятилетий теоретизировали по поводу существования частицы, настолько важной для понимания материи, что ее открытие должно было завершить Стандартную модель физики элементарных частиц.
Бозон Хиггса, если бы он был обнаружен, позволил бы подтвердить ведущую теорию, объясняющую, как фундаментальные частицы могли обрести массу на ранней стадии развития Вселенной. Кроме того, мы надеялись, что это даст нам некоторое представление о физических законах, действующих за пределами нашей нынешней сферы исследований. Но сама перспектива изучения неизвестных областей реальности вселяла страх в сердца некоторых людей. Никто и никогда не производил столкновений частиц такой высокой энергии. Никто не знал, как законы физики поведут себя в таких условиях.
По Всемирной паутине начали распространяться наихудшие сценарии развития событий. Кто-то предполагал, что установка откроет портал в другое измерение, разорвав саму ткань пространства. Кто-то говорил о возможном возникновении крошечной черной дыры, которая начнет расти и в итоге поглотит всю планету. Кто-то боялся, что в результате будет создана так называемая странная материя — своеобразное вещество, состоящее из странных, верхних и нижних кварков, что, по мнению некоторых, могло запустить цепную реакцию в стиле «лед-девять» в книге Курта Воннегута «Колыбель для кошки» рассказывается о создании новой формы вещества под названием «лед-девять», которая более стабильна по сравнению с жидкой водой. Соприкоснувшись с частицей льда-девять, вода и сама превращается в это вещество, что создает угрозу существованию жизни на Земле.
Однако физиков это не остановило. В ноябре 2009 года на ускорителе БАК произвели первые столкновения протонов высокой энергии. Из того, что жизнь на этой планете все еще существует, следует, что ни одна из предполагаемых катастроф так и не произошла. Если вы все еще волнуетесь, можете отслеживать ситуацию в режиме реального времени на сайте: www. Был ли этот эксперимент оправдан, учитывая потенциальные риски?
Физиков нельзя назвать самыми осторожными людьми, однако изучение сценариев типа «что, если» — это наш хлеб насущный, кроме того, возможность глубоко подумать о реальной физике, стоящей за гипотетической вероятностью всеобщего уничтожения, было бы очень жаль упускать. RHIC The Relativistic Heavy Ion Collider — это релятивистский коллайдер тяжелых ионов, предшественник БАК, расположенный в Брукхейвенской национальной лаборатории, который был предназначен для столкновения ядер тяжелых элементов вроде золота при высоких энергиях. Сам по себе этот новаторский эксперимент вызывал беспокойство по поводу непредвиденных последствий, которые могли представлять угрозу существованию планеты или Вселенной , и цель написания этой статьи заключалась в том, чтобы полностью исследовать и по возможности развеять эти опасения. Полученные результаты были обнадеживающими. Основываясь на теоретических соображениях, исследователи оценили возможность создания странной материи или черных дыр как крайне маловероятную.
Кроме того, их выводы подкреплялись и экспериментальными данными, а именно существованием Луны. Аргументация в пользу любого потенциально разрушительного явления, порожденного коллайдером, основывается на идее о том, что столкновения частиц такой высокой энергии настолько беспрецедентны, что мы не можем предугадать их последствий. Однако при этом игнорируется важный факт: несмотря на то что уровни энергии, достигаемые на RHIC и БАК, непривычны для нас, жалких людишек, космические лучи, путешествующие по Вселенной, постоянно их достигают и сталкиваются между собой и с другими объектами. На протяжении миллиардов лет по всей Вселенной происходили столкновения при гораздо более высоких энергиях, чем может обеспечить любой из наших коллайдеров, и если бы они могли привести к разрушению космоса, мы бы наверняка это заметили. Что если по всему космосу разбросаны скопления странной материи, а мы просто этого не знаем?
Несмотря на то что в большинстве случаев частицы, произведенные в коллайдере, по нашему мнению, обладают остаточным импульсом, который позволяет им покинуть лабораторию сразу после возникновения, в ходе экспериментов мы вполне можем получить нечто опасное, способное задержаться в детекторе. Что тогда? К счастью, для исследования этих эффектов мы можем использовать Луну. Данные, полученные от наземных детекторов и космических телескопов, говорят о том, что высокоэнергетические космические лучи бомбардируют Луну постоянно. На самом деле, благодаря радиотелескопам мы можем использовать Луну даже в качестве детектора нейтрино, что само по себе довольно здорово.
Если бы столкновения частиц высоких энергий могли превратить обычное вещество в странную материю, это уже давно произошло бы на Луне, и сейчас в небе мы бы видели совершенно другой объект. Если бы на Луне образовалась крошечная черная дыра и поглотила ее, это также повлияло бы на вид ночного неба. Не говоря уже о том, что люди были на Луне, гуляли по поверхности, играли в гольф и привезли оттуда образцы грунта. Судя по всему, Луна прекрасно себя чувствует, поэтому авторы работы, посвященной RHIC, были уверены, что ускоритель не представляет для нас опасности. Правда, странная материя и черные дыры были не единственными сценариями апокалипсиса.
Еще одно опасение, которое также удалось развеять путем наблюдения за высокоэнергетическими космическими лучами, заключалось в том, что столкновения частиц высоких энергий могут вызвать разрушительное для Вселенной квантовое событие под названием «распад вакуума». Эта идея основывается на гипотезе о том, что нашей Вселенной присуща некая фатальная нестабильность. Несмотря на то что такой сценарий может показаться пугающим, каким бы маловероятным он ни был, на момент ввода RHIC в эксплуатацию реальные доказательства существования такой нестабильности отсутствовали, поэтому данная возможность не рассматривалась всерьез. Однако все изменилось в 2012 году, когда с помощью ускорителя БАК был обнаружен бозон Хиггса. Состояние Вселенной Вернейший способ заставить специалиста по физике элементарных частиц поморщиться — это назвать бозон Хиггса «частицей бога», как он известен широкой публике.
Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии хотя некоторых именно это раздражает больше всего. Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица.
Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу. Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия и света , к электромагнитному полю, — это локализованное «возбуждение» чего-то, что пронизывает обширное пространство. Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии. Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче.
Физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода. Когда условия изменились, то же произошло и с законами физики. Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино.
Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре. В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена — в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец. Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы.
Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе. Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит. В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса.
Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы правда, не фотон и не глюон получили возможность взаимодействовать с самим полем Хиггса. Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса. Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой.
Представьте, что пар — это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства. А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму.
К тому же это событие, если вообще возможно, очень маловероятно. Ожидаемое минимальное время до него — десять миллиардов триллионов триллионов триллионов триллионов лет 10 в 58-й степени. Учитывая, что нынешний возраст наблюдаемой Вселенной примерно в триллион триллионов триллионов триллионов раз меньше, возможность такого события в ближайшее время не слишком велика.
О чем же тогда пишут СМИ? Они пытаются, в меру сил и возможностей, описать научную работу , опубликованную в журнале Nature Physics впрочем, даже полное название журнала корректно смогли указать не все. Проблема в том, что она отнюдь не описывает ложный вакуум в квантовомеханическом смысле этого слова: авторы разбирают симуляционную модель перехода из состояния с одной минимальной энергией в состояние с чуть более низкой минимально возможной энергией. Однако реальная новость вновь заслоняется выдуманной: часто пишут, будто «Вояджер-2» и «Водяжер-1» покинули Солнечную систе… naked-science. Опыт проходил в среде с температурами в районе долей градуса выше абсолютного нуля. Однако он не касался вакуума в физическом смысле этого слова, в том числе потому, что происходил в среде, насыщенной атомами.
При этом поле Хиггса, квантом которого является знаменитый хиггсовский бозон, представляет собой некоторое исключение, поскольку находится в состоянии так называемого «ложного вакуума», то есть, на самом деле, стабильности не достигает. Исследователи отмечают, что поле Хиггса, в том числе, даёт массу частицам. Если однажды некоторое квантовое событие заставит поле Хиггса устремиться к стабильному состоянию, это может привести к необратимому цепному процессу — вакуумному распаду, сообщают учёные. Это, в свою очередь, приведёт к тому, что по космосу с огромной скоростью начнёт распространяться сфера так называемого «истинного вакуума», внутри которой не будут работать даже привычные нам законы физики из-за нарушения Стандартной модели.
К тому же это событие, если вообще возможно, очень маловероятно. Ожидаемое минимальное время до него — десять миллиардов триллионов триллионов триллионов триллионов лет 10 в 58-й степени. Учитывая, что нынешний возраст наблюдаемой Вселенной примерно в триллион триллионов триллионов триллионов раз меньше, возможность такого события в ближайшее время не слишком велика. О чем же тогда пишут СМИ? Они пытаются, в меру сил и возможностей, описать научную работу , опубликованную в журнале Nature Physics впрочем, даже полное название журнала корректно смогли указать не все. Проблема в том, что она отнюдь не описывает ложный вакуум в квантовомеханическом смысле этого слова: авторы разбирают симуляционную модель перехода из состояния с одной минимальной энергией в состояние с чуть более низкой минимально возможной энергией.
Однако реальная новость вновь заслоняется выдуманной: часто пишут, будто «Вояджер-2» и «Водяжер-1» покинули Солнечную систе… naked-science. Опыт проходил в среде с температурами в районе долей градуса выше абсолютного нуля. Однако он не касался вакуума в физическом смысле этого слова, в том числе потому, что происходил в среде, насыщенной атомами.
Видео: смерть Вселенной из-за распада вакуума
Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира. Аннотация: На примере распада метастабильного состояния скалярного поля (конформный вакуум скалярных частиц над ложным классическим вакуумом). В результате распада ложного вакуума огромная энергия, запасенная полем, высвободится — в конечном счете, это выразится в образовании большого числа частиц и приведет к повторному разогреванию Вселенной. Возможно, мы застанем распад ложного вакуума. Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума».