Новости спинной мозг новости

Болезни спинного мозга — это патологические состояния, вызванные пороками развития, дегенеративными изменениями, опухолями, сосудистыми нарушениями и повреждениями спинномозгового канала, которые приводят к структурно-функциональным изменениям отделов. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года. Они создали из стволовых клеток каркасы, которые можно успешно имплантировать в спинной мозг с целью восстановления повреждений нервов. — Исследования цитокинов при травме спинного мозга помогают лучше понять патофизиологию повреждения и могут предоставить ценную информацию для разработки новых методов лечения и диагностики, — цитирует ведущего научного сотрудникоа НИЛ «Генные и.

Российский нейроимплант поможет двигаться пациентам с травмами спинного мозга

Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. Клетки микроглии при травме спинного мозга активируются, то есть возникает иммунный ответ, и его степень напрямую зависит от тяжести травмы. Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. Создан препарат со стволовыми клетками для лечения спинного мозга. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства. Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС.

Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг

Такая платформа на основе показаний датчиков движения в стимуляторе создаёт импульсы в ответственных зонах спинного мозга и заставляет мышцы конечностей совершать работу, а человеку передвигаться, правда, очень и очень ограниченно. Поскольку у пациента остались электроды в позвоночнике на спинном мозге , учёные решили подавать на них управляющий сигнал из головного мозга. Для этого потребовалось организовать цифровой беспроводной мост, поскольку нервная ткань между спинным и головным мозгом была разорвана в результате травмы. Для считывания сигналов из головного мозга в череп пациенту были имплантированы датчики со своими массивами электродов. Блок управления электродами получал внешнее индуктивное беспроводное питание на частоте 13,56 МГц, а считанная мозговая активность передавалась другой антенной — дециметровой на частоте 405 МГц. Данные принимались и расшифровывались приёмным устройством возможно, ноутбуком , который пациент был обязан носить в рюкзаке за спиной.

В контексте исследований спинного мозга было установлено, что интегрины являются ключевыми игроками в стимулировании роста аксонов.

При их повреждении, как это происходит при травме спинного мозга, связь между нервами прерывается, что приводит к потере функциональности. Группа специалистов Калифорнийского университета решила использовать интегрины для стимулирования роста поврежденных аксонов. Сначала они использовали передовой генетический анализ для выявления групп нервных клеток, способных улучшить ходьбу после частичного повреждения спинного мозга. Затем исследователи обнаружили, что простая регенерация аксонов этих нервных клеток через поврежденный спинной мозг без использования специфических мишеней не влияет на восстановление функций. Однако когда стратегия была усовершенствована и стала включать использование химических сигналов для привлечения и направления регенерации этих аксонов к их естественной целевой области в поясничном отделе спинного мозга, в мышиной модели полного повреждения спинного мозга было отмечено значительное улучшение способности ходить. Майкл Софрониев, профессор нейробиологии Медицинской школы Дэвида Геффена при Калифорнийском университете и ведущий автор нового исследования, поясняет в пресс-релизе: "Наше исследование предоставляет важнейшую информацию о тонкостях регенерации аксонов и требованиях к функциональному восстановлению после травмы спинного мозга".

Он добавил: "Это подчеркивает необходимость не только регенерировать аксоны при повреждениях, но и активно направлять их к их естественным целевым областям для достижения значительного неврологического восстановления". Проблемы и осторожность на пути к клиническим испытаниям на людях Последствия этого открытия огромны.

В новой статье, опубликованной в Nature , исследователи пишут, что им удалось сделать «стимуляторные» движения более естественными, более произвольными, так что человек, например, теперь мог подняться по ступенькам. Ходьбу сделали более естественной, поручив контроль над стимулирующим имплантатом головному мозгу.

Правда, в головной мозг тоже пришлось вживить имплантат, точнее, два имплантата с 64 электродами, которые считывали импульсы из двигательных зон коры. Сигналы беспроводным образом передавались на гарнитуру, прикреплённую к голове, с неё — на лэптоп в рюкзаке за спиной. Лэптоп расшифровывал сигнал из головного мозга, чтобы стало понятно, о каком движении он думал. Дальше уже спинномозговому имплантату отправлялась информация, на какие мышцы нужно подействовать, чтобы совершить запланированное движение.

Считыванием сигналов из мозга и перевод их в понятные алгоритмические команды занимаются нейрокомпьютерные интерфейсы. Здесь нейрокомпьютерный интерфейс соединили со спинномозговым имплантатом, и вместе они продублировали исходное спинномозговое соединение, повреждённое травмой. На то, чтобы освоиться с новой системой, понадобилось сорок тренировок, после чего доброволец с двумя имплантатами начал двигаться более естественно и в произвольном ритме. Теперь он мог, например, садиться в машину и выходить из неё, и даже, как было сказано, подниматься и спускаться по лестнице.

Благодаря тому, что электростимуляция спинного мозга теперь была под контролем пусть и опосредованным мозга головного, движения в щиколотках, коленях и тазобедренных суставах стали более точными хотя нельзя сказать, что человек стал двигаться абсолютно свободно — движения даются всё-таки с определённым усилием.

Так, хотя распространено мнение о том, что при нарушении связи между головным и спинным мозгом человек больше никогда не сможет ходить, современная наука говорит об обратном. Главными инфопартнерами съезда стали портал Neuronovosti.

Ru и объединенная редакция порталов Indicator. Ru и Inscience. Юрий Герасименко.

Фото: ИЭФБ РАН Долгое время считалось, что основная функция спинного мозга — лишь передача сигналов от головного мозга к мотонейронам в исполнительных органах и обратная передача сенсорной информации. Поэтому, если у человека, например из-за травм нарушалась связь между головным и спинным мозгом, полагали, что он больше никогда не сможет самостоятельно передвигаться. Однако ученые обнаружили, что в спинном мозге существует собственная спинальная нейронная сеть, отвечающая за локомоцию, то есть движение.

Технологии позволяют опытным хирургам справляться с патологиями позвоночника и спинного мозга

Предлагаются различные стратегии восстановления нейронных связей, как биологические активация роста аксонов нейронов, трансплантация клеток нейроглии, поддерживающих рост, и т. Однако пока что ни одна стратегия не признана достаточно эффективной и безопасной. Подобную конструкцию они исследовали на обезьянах еще в прошлом десятилетии. Имплантированный чип в головном мозге получал сигналы от нейронов моторной коры, контролирующих движения задних лап, и с помощью беспроводного интерфейса передавал декодированные сигналы на другой имплантат, расположенный ниже повреждения спинного мозга эпидуральная электростимуляция. В результате животные снова смогли ходить. В новой работе представлены результаты эксперимента, в котором участвовал человек с травмой спинного мозга. Два беспроводных регистратора, каждый из которых содержит 64 электрода, в ходе операции были размещены на твердой мозговой оболочке одна из трех оболочек, покрывающих мозг, самая внешняя , над областями, которые участвуют в контроле движений ног. Такой метод отведения потенциалов, при котором электроды располагаются на мозге, называется электрокортикографией, или ЭКоГ; потенциалы имеют большую амплитуду и разрешение, чем при ЭЭГ. Участки, сильнее всего реагирующие на намерение пошевелить ногами, выбрали с помощью компьютерной томографии и магнитоэнцефалографии. В имплантате также есть две антенны: одна питает его за счет индуктивной связи, а другая, сверхвысокочастотная, транслирует сигналы ЭкоГ в режиме реального времени на портативную базовую станцию ее пока приходится носить в рюкзаке. Третью многоэлектродную решетку имплантировали в твердую оболочку спинного мозга, чтобы сигналы поступали на входные зоны задних корешков.

В России разработали препарат для лечения травм спинного мозга Клинические испытания планируются в 2024 году Гендиректор федерального центра мозга и нейротехнологий ФМБА РФ Всеволод Белоусов во время III конгресса молодых ученых сообщил, что ведущие специалисты центра анонсировали разработку препарата на базе стволовых клеток. Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС.

Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами". Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы. Он также вновь открыл для себя походы с друзьями в бар. Имплантаты оставались эффективными и через год, в том числе и тогда, когда Оскам находился дома без присмотра врачей.

Эксперименты в этом направлении велись давно, однако работоспособность некоторых двигательных функций не возвращалась.

Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами. Исследователи провели опыт на мышах с относительно легкими травмами, а также на грызуне с серьезным повреждением спинного мозга.

Человеческому мозгу вернули контроль над парализованными ногами

Ученые из Калифорнийского университета в Лос-Анджелесе и Гарвардского университета провели исследование, которое может иметь огромное значение для восстановления спинного мозга после травмы. Медновости. Гипотезы и открытия. Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19. Клетки микроглии при травме спинного мозга активируются, то есть возникает иммунный ответ, и его степень напрямую зависит от тяжести травмы. Российские учёные работают над особым типом клеток, на основе которых может быть создан инновационный клеточный продукт, который поможет пациентам с травмами спинного мозга, особенно в ситуациях, когда сформировались постравматические кисты.

В России разработали препарат для лечения травм спинного мозга

Новости 16 апреля. После нанесения этим подопытным мышам травм с повреждением спинного мозга в их эпендимальных клетках включалась программа превращения в олигодендроциты, которые затем мигрировали в места демиелинизации аксонов и ремиелинизировали их. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства. Ученые показали, что при различных травмах спинного мозга у мышей можно управляемо запустить процесс образования полноценных олигодендроцитов, которые будут выполнять свои функции по миелинизации аксонов нервных клеток поврежденной ткани. Новости окружающая среда Спинной мозг беспроводным способом подкл. Столь необычный способ управления кресла в первую очередь предназначен для страдающих повреждением спинного мозга, передают американские СМИ.

Журнал Forbes Kazakhstan

  • Важная победа над природой: как скоро можно будет чинить спинной мозг
  • Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом
  • Важная победа над природой: как скоро можно будет чинить спинной мозг
  • Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19
  • Science: Ученые заставили мышей пойти после повреждения спинного мозга
  • Ученые из Израиля успешно провели первую в мире 3D-трансплантацию тканей спинного мозга человека

Ученые КФУ разработали новый метод восстановления спинного мозга

А в участок спинного мозга, контролирующий движения ног, был имплантирован электронный нейростимулятор, который, стимулируя спинной мозг, заставляет его активизировать мышцы нижних конечностей. Сайт для специалистов и больных по проблеме травматической болезни спинного мозга. Клиника, диагностика, лечение, реабилитация. Новейшие достижения и перспективы исследования. Спинной мозг новости восстановления. Российские новости. Несколько этапов экспериментов на мышах показали ученым возможность регенерации нейронов спинного мозга после травм позвоночника.

Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом

Контрольная мышь получала такую же стимуляцию в то же время, но без привязки к положению ее задней лапы. Уже через 10 минут наблюдались результаты моторного обучения, но только у подопытных мышей: их лапки оставались высоко поднятыми, избегая электрической стимуляции. Этот результат показал, что спинной мозг может ассоциировать неприятные ощущения с положением ног и адаптировать свою двигательную активность таким образом, чтобы избежать неприятных ощущений. И все это без участия мозга. Двадцать четыре часа спустя они повторили 10-минутный тест, но поменяли местами подопытных и контрольных мышей. Подопытные мыши по-прежнему не поднимали ноги, то есть в спинном мозге сохранилась память о прошлом опыте, который мешал новому обучению.

Установив таким образом, что в спинном мозге происходит как непосредственное обучение, так и формирование памяти, команда исследователей приступила к изучению нейронной цепи, которая обеспечивает эти функции. Они использовали шесть видов трансгенных мышей, у каждой из которых был отключен разный набор спинальных нейронов, и протестировали их на способность к формированию моторной памяти, а затем — к обратному обучению.

Блок управления электродами получал внешнее индуктивное беспроводное питание на частоте 13,56 МГц, а считанная мозговая активность передавалась другой антенной — дециметровой на частоте 405 МГц. Данные принимались и расшифровывались приёмным устройством возможно, ноутбуком , который пациент был обязан носить в рюкзаке за спиной. Сначала алгоритм научили распознавать активность головного мозга в ответ на команды совершать те или иные движения ногами, а затем его обучили синхронизировать желания пациента двигать конечностями с сигналами, передаваемыми к спинному мозгу и дальше к целевым мышцам ног. В результате обучения цифровой интерфейс помог пациенту делать то, что ему стало недоступно после травмы — ходить по пересечённой местности и удерживать баланс с костылями. Платформа работала хорошо также в домашних условиях, а не только под присмотром врачей. Более того, часть путей нейронов в головном мозге смогла перестроиться, и пациент ряд действий мог совершать даже без искусственной стимуляции.

Рассмотрим на примере крысы новый метод восстановления спинного мозга. Его разработала международная группа ученых, в которую входил петербургский специалист, руководитель лаборатории нейрофизиологии и экспериментальной нейрореабилитации НИИ Фтизиопульмонологии Министерства здравоохранения РФ, руководитель лаборатории нейропротезов Института трансляционной биомедицины Санкт-Петербургского государственного университета, старший научный сотрудник Института физиологии им. Собственно, на грызунах ученые и ставили эксперименты.

Ученые-медики вживляют имплантат в поврежденный участок спинного мозга, из-за которого происходит паралич нижних конечностей. С его помощью разные участки спинного мозга будут стимулировать. На туловище надевают так называемый жилет, который поддерживает вес тела.

Затем начинаются тренировки. Пациента отправляют на лечебную физкультуру, где учат заново ходить.

Это первый случай, когда мозг, тело и спинной мозг парализованного человека были соединены электронным способом, чтобы долгосрочно восстановить движение и чувствительность. Когда участник исследования думает о движении руки или кисти, мы «перезаряжаем» его спинной мозг и стимулируем его мозг и мышцы, чтобы помочь восстановить связи, обеспечить сенсорную обратную связь и способствовать выздоровлению.

Этот тип терапии, управляемой мыслями, меняет правила игры. Наша цель — однажды использовать эту технологию, чтобы дать людям, живущим с параличом, возможность жить более полной и более независимой жизнью. Чад Бутон, разработчик технологии и главный руководитель клинических испытаний 15-часовая операция была проведена Кейту Томасу Keith Thomas. В 2020 году он попал в аварию и повредил позвоночник в районе позвонков C4 и C5, из-за чего полностью утратил чувствительность и способность двигаться ниже груди.

Подпишитесь на ежемесячную рассылку новостей и событий российской науки!

  • Science: Ученые заставили мышей пойти после повреждения спинного мозга
  • Прорыв в лечении поврежденного спинного мозга
  • Виды поражений в зависимости от локализации патологии
  • Журнал Forbes Kazakhstan

Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг

Разработки Команда швейцарских исследователей начинала с крыс, продолжила макаками, а после успешных экспериментов перешла на людей. Принцип такой: электроды помещают между позвоночником и спинным мозгом и с их помощью стимулируют нужные нервные окончания — то есть имитируют сигналы, которые должны поступать из головного мозга. Такая стимуляция позволяла прежде парализованным людям стоять, двигать ногами, ходить, ездить на велосипеде и заниматься греблей. Однако обычно пациентам с имплантированными в позвоночник электродами приходится носить еще и датчики движения. Эти датчики отслеживают движения мышц и помогают выбирать сигнал, который следует послать в спинной мозг дальше. Это не слишком похоже на естественный контроль движения, а ходить пациенты могут если вообще могут только с опорой и только по беговой дорожке или ровным поверхностям. Устройство испытали на мужчине 38 лет, который десять лет назад упал с велосипеда и получил неполную травму спинного мозга и перестал ходить. Несколько лет назад пациент уже участвовал в клиническом испытании: это была пятимесячная программа нейрореабилитации, основанная на все той же эпидуральной стимуляции спинного мозга. Тогда стимуляция помогла ему снова начать ходить — с помощью ходунков с колесом. Также удалось восстановить частичную подвижность без стимуляции.

Еще три года мужчина применял стимуляцию дома, но ходить он мог только по плоским поверхностям, и ему было трудно останавливаться и снова начинать движение.

Два беспроводных регистратора, каждый из которых содержит 64 электрода, в ходе операции были размещены на твердой мозговой оболочке одна из трех оболочек, покрывающих мозг, самая внешняя , над областями, которые участвуют в контроле движений ног. Такой метод отведения потенциалов, при котором электроды располагаются на мозге, называется электрокортикографией, или ЭКоГ; потенциалы имеют большую амплитуду и разрешение, чем при ЭЭГ. Участки, сильнее всего реагирующие на намерение пошевелить ногами, выбрали с помощью компьютерной томографии и магнитоэнцефалографии. В имплантате также есть две антенны: одна питает его за счет индуктивной связи, а другая, сверхвысокочастотная, транслирует сигналы ЭкоГ в режиме реального времени на портативную базовую станцию ее пока приходится носить в рюкзаке. Третью многоэлектродную решетку имплантировали в твердую оболочку спинного мозга, чтобы сигналы поступали на входные зоны задних корешков. Эти структуры проецируются на сегменты спинного мозга, которые содержат двигательные нейроны, контролирующие мышцы ног.

Алгоритм базовой станции декодирует сигналы ЭКоГ и преобразует их в стимулирующие сигналы; они передаются генератору импульсов, он, в свою очередь, стимулирует нейроны спинного мозга, а от них сигналы поступают к мышцам. Схема расположения имплантатов и блока обработки в рюкзаке, преобразующего сигналы головного мозга в сигналы для активации мышц; справа хронофотографии участника и параллельные его движениям операции цифрового моста: спектрограмма активности мозга, вероятность движений левой и правой ноги, вычисленная по этим сигналам, и результирующая модуляция амплитуды стимуляции. Credit: Nature. DOI: 10. Частичный разрыв спинного мозга привел к тетраплегии — потере функции конечностей.

Для этого биологи использовали секвенирование РНК в каждом из ядер клеток отдельно snRNA-seq и нанесли результаты секвенирования на проекцию спинного мозга. Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов.

Чтобы выделить ту субпопуляцию, которую исследователи искали принимающую участие в реабилитации , биологи использовали метод приоритезации. Алгоритм машинного обучения Augur выделил в построенном атласе те нейроны, экспрессия которых больше всего менялась при реабилитации. Оказалось, что есть группа нейронов, которая меняет свою экспрессию в ответ на все параметры терапии. Эти клетки экспрессировали маркеры Vsx2 и Hoxa10 и принадлежали к группе возбуждающих интернейронов. Их назвали по этим генам и происхождению из спинного мозга spinal cord — SCVsx2::Hoxa10. Далее исследователи проверили, действительно ли эти клетки принимают участие в рутинной ходьбе до травмы и в самом процессе реабилитации.

Будьте в курсе событий Десятилетия науки и технологий! Десятилетие науки и технологий в России Российская наука стремительно развивается. Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна.

Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича

Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы. Он также вновь открыл для себя походы с друзьями в бар. Имплантаты оставались эффективными и через год, в том числе и тогда, когда Оскам находился дома без присмотра врачей. Его лечением занимались неврологи и нейрохирурги из швейцарской Университетской больницы Лозанны, Университета Лозанны и Швейцарского федерального технологического института Лозанны. Сами имплантаты разработала Французская комиссия по атомной энергии. Как работает технология? Руководитель проекта в комиссии Гийом Шарве рассказал, что имплантаты используют "адаптивный искусственный интеллект" для декодирования намерений мозга о движении в режиме реального времени.

На стендах показали бионические протезы, роботизированную систему УЗИ, квантовые очки с in vitro диагностикой и другие новинки отрасли. Ранее президент Владимир Путин заявил о важности ИИ-технологий, генетики и геномики, нейротехнологии для современной медицины. Он подчеркнул, что Россия готова сотрудничать с другими странами в передовых медицинских направлениях.

Травмы 2023 Выпущено вживляемое в тело устройство для реабилитации людей с травмами спинного мозга 15 мая 2023 года компания Onward Medical со штаб-квартирой в Эйндховене Нидерланды сообщила о первом успешном использовании имплантируемого устройства ARC-IM для реабилитации людей с травмами спинного мозга. Подробнее здесь. Вышло портативное устройство для поддержки дыхания пациентов с травмами спинного мозга 5 апреля 2023 года американская компания Synapse Biomedical сообщила о выходе системы стимуляции диафрагмы NeuRx NeuRx DPS , предназначенной для пациентов с травмами спинного мозга, которым требуется искусственная вентиляция лёгких ИВЛ.

Их использование увеличило число формирующихся новых нервных клеток в десятки раз. Подавление действия цепочки p53-p21 на первом этапе трансформации глии в стволовые клетки и ведение факторов роста Noggin и BDNF на стадии их последующей дифференциации привело к получению в конечном итоге в тысячи раз большего количества зрелых нейронов, которого уже было достаточно для полного «ремонта» участков повреждения спинного мозга подопытных мышей. Авторы этого научного проекта вначале имели некоторые опасения относительно подавления экспрессии p53 из-за того, что этот белок представляет собой своеобразную защиту от неконтролируемой пролиферации клеток, как в случае с мутировавшими злокачественными клетками, но наблюдения за лабораторными грызунами на протяжении 15 месяцев в ходе исследования не показали существования риска развития рака в спинном мозге испытуемых млекопитающих. Исследователи расценивают результаты своей работы очень большим успехом на пути создания методики использования собственных клеток из организма пациента для полноценной регенерации поврежденных частей спинного мозга при травмах позвоночника. Такой подход позволяет избежать побочных нежелательных осложнений и применения иммуносупрессивной терапии, которые присущи практикуемым в настоящее время операциям по пересадке нейронных трансплантатов от доноров.

Похожие новости:

Оцените статью
Добавить комментарий