Найти угол между проекциями наклонных, если угол между наклонными равен 60 градусам. 1 ответ - 0 раз оказано помощи. Дано: АВ=х см. - наклоннаяАС=х+26 см. - наклонная АН - высотаНВ=12 см. проекция АВНС=40 см. проекция АСНайти: АВ и. Из точки А к плоскости проведены две наклонные АВ и АС, образующие между собой прямой угол.
Из точки к плоскости
Из точки к плоскости проведены 2 наклонные одна из которых на 26 см больше другой. АН-перпендикуляр к плоскости. Проекции наклонных НС=8 см НВ=5 см. Из ΔАНВ найдем АН: АН²=АВ²-НВ²=АВ²-25 Из ΔАНС найдем АН: АН²=АС²-НС²=(АВ+1)²-64=АВ²+2АВ-63 Приравниваем: АВ²-25=АВ²+2АВ-63 2АВ=38 АВ=19 АС=19+1=20 Ответ: 19 и. 15АВ=15 см. длина меньшей =15+26=41 см. длина большей : 15 см. и 41 см. Объяснение. Из точки А к плоскости а проведены наклонные АВ и АС, длины которых относятся как 5: 6. Найдите расстояние от точки А до плоскости α, если проекции наклонных на эту плоскость равны 4 и 3 корень из: начало аргумента: 3 конец аргумента см. Через точку А, удаленную от плоскости α на 4 см, проходит прямая, пересекающая п. 1. Из точки к плоскости проведены две наклонные, длины которых относятся как 5: 6. Найдите расстояние от точки до плоскости, если соответствующие проекции наклонных равны 4 см и 33 см.
Из точки а к плоскости альфа
Таким образом, МD и является расстоянием от точки до прямой. Рассмотрим прямоугольный треугольник АСD. Найдем СD. Ответ: 6 см.
Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра. Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость. Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной.
Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной. AC — наклонная, CB — проекция. С — основание наклонной, B — основание перпендикуляра. У равных наклонных, проведенных к плоскости из одной точки, проекции равны.
Найдите длину проекции наклонной на эту плоскость, если она длиннее перпендикуляра на 2. На этой странице находится вопрос Из точки к плоскости проведены две наклонные? По уровню сложности данный вопрос соответствует знаниям учащихся 10 - 11 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Геометрия. Если ответы вызывают сомнение, сформулируйте вопрос иначе.
Для этого нажмите кнопку вверху.
Определить форму сечения треугольной пирамиды плоскостью, параллельной двум скрещивающимся ребрам, если эти ребра взаимно перпендикулярны. Стороны треугольника относятся как10:17:21, а его площадь равна 84. Из вершины большего угла этого треугольника проведен перпендикуляр к его плоскости, равный 15. Найдите расстояние от его концов до большей стороны. Вариант 8 1. Найдите: АВ 2. Найти длину перпендикуляра АМ. Вариант 9 1.
Из концов отрезка АВ, параллельного плоскости проведены наклонные АС и BD, перпендикулярные отрезку АВ, проекции которых на плоскость соответственно равны 3 см и 9 см и лежат по разные стороны от проекции отрезка АВ. Найдите боковые ребра. Вариант 10 1. Найти расстояние между прямой АВ и CD, если они удалены от прямой EF соответственно на 17 см и 25 см, а их проекции от той же прямой — на 15 см.
Редактирование задачи
Несколько наклонных плоскостей. Из точки а к плоскости Альфа проведены перпендикуляр и Наклонная. Из точки а к плоскости а проведены наклонные. Из точки а к плоскости Альфа проведены.
Из точки а к плоскости Альфа проведены две наклонные. Проекция наклонной ab к плоскости Альфа. Как найти длину проекции наклонной.
Расстояние проекции наклонных. Угол между проекциями 60. Наклоны АВ, АС.
Ab перпендикуляр к плоскости Альфа ad и AC наклонные к a. От точки а к плоскости проведены наклонные АВ. Точка удалена от плоскости.
Плоскость удалена от плоскости. Угол между проекциями наклонных. Из точки к плоскости проведены 2 наклонные.
Перпендикуляр и Наклонная теорема о трех перпендикулярах. Две наклонные на плоскости. Теорема о двух перпендикулярах к плоскости.
Во перпендикуляр к плоскости Альфа. А H перпендикулярно а АВ Наклонная. Задачи на перпендикуляр и наклонную.
Перпендикуляр и Наклонная задачи. Из точки проведена плоскость. Задачи по теме перпендикуляр и Наклонная.
Расстояние от прямой до плоскости перпендикулярной. Расстояние от прямой к плоскости. Прямая проведенная из точки перпендикулярно к плоскости.
Прямая проходит через перпендикуляр к плоскости. Наклонные к плоскости. Перпендикуляр и Наклонная.
Две наклонные. Что такое угол 90 между наклонной и плоскостью. Угол между наклонными.
Угол между наклонными плоскостями. Из точки к плоскости проведены две наклонные. Две наклонные проведенные к плоскости.
Из точки м к плоскости проведены перпендикуляр и Наклонная. Из точки d к плоскости ABC проведены перпендикуляр и Наклонная. Из точки м к плоскость проведена Наклонная.
Из точки а не принадлежащей плоскости Альфа проведены к этой. Из точко а к плоскости проведен наклонные аб и АС. Из точки а не принадлежащей плоскости а проведены к этой.
Перпендикуляр Наклонная проекция задачи. Перпендикуляр и наклонные к плоскости. Наклонная проведенная к плоскости.
Перпендикуляр и Наклонная к плоскости.
Если прямая перпендикулярна к плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости Прямая, перпендикулярная к каким-нибудь двум прямым, лежащим в плоскости, перпендикулярна к этой плоскости Прямая, пересекающая круг в центре и перепендикулярная к его двум радиусам, не лежащим на одной прямой, перпендикулярна к плоскости круга Прямая, перпендикулярная к двум не параллельным хордам круга, перпендикулярна к его плоскости Если плоскость перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой Если прямая перпендикулярна к одной из двух параллельных плоскостей, то она перпендикулярна и к другой Если две плоскости перпендикулярны к одной и той же прямой, то они параллельны Если две прямые перпендикулярны к одной и той же плоскости, то они 25.
Пусть a и b - длины наклонных A и B. Также из условия известно, что проекции наклонных на плоскость относятся как 2:3.
Пусть p и q - длины проекций наклонных A и B на плоскость.
Первый способ. Решение написала от руки, так как сложно набирать математические символы на ПК. В этом случае точки В, Н и С не будут лежать на одной прямой. Тогда все данные задачи сливаются не в треугольник, а в тетраэдр. Это выглядит так. Когда сложно понять задачу, пространственную фигуру конструирую из палочек. Здесь, как видим, изменятся проекции наклонных.
Рейтинг сайтов по написанию работ
- Самостоятельная работа на тему «Перпендикуляр и наклонная» с ответами, 10 класс
- Лучший ответ:
- Редактирование задачи
- Из точки м к плоскости альфа
Рейтинг сайтов по написанию работ
- 1. Из точки к плоскости проведены две наклонные, образующие со своими проекциями...
- 1. Из точки к плоскости проведены две наклонные, образующие со своими проекциями...
- Из точки к плоскости
- решение вопроса
Презентация к уроку _Перпендикулярность прямой и плоскости_ 10 класс
Рисунок наклонной, проведенной из данной точки к данной прямой, начинают с изображения перпендикуляра (даже если в условии задачи о перпендикуляре не упоминается). Пусть SO перпендикуляр к плоскости a, a SA и SB — данные наклонные. Из точки А проведём две наклонные прямые, причем АВ < АС, а также перпендикуляр к плоскости АО.
Перпендикуляр и наклонные к плоскости
Из некоторой точки к плоскости проведены две наклонные, каждая из которых равна 4. 1. Из точки, отстоящей от плоскости на расстоянии 5 см, проведены две наклонные под углом 30o к плоскости, причём их проекции образуют угол 120o. Из точки к плоскости проведены две наклонные, равные 20 см и 15 см. Разность проекций этих наклонных равна 10 см. Найти проекции наклонных. Ваш вопрос звучал следующим образом: Из точки к плоскости а проведены две наклонные. Задача 2. Из некоторой точки проведены к плоскости перпендикуляр и две наклонные, которые образуют с плоскостью углы 60° и 30° соответственно. Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.