Ну это может быть: Биас, Антон — немецкий политик, социал-демократ Биас, Фанни — артистка балета, солистка Парижской Оперы с 1807 по 1825 год.
Что такое BIAS и зачем он ламповому усилителю?
Find out what is the full meaning of BIAS on. Загрузите и запустите онлайн это приложение под названием Bias:: Versatile Information Manager with OnWorks бесплатно. В этой статье мы рассмотрим, что такое информационный биас, как он проявляется в нейромаркетинге, и как его можно избежать. The concept of bias is the lack of internal validity or incorrect assessment of the association between an exposure and an effect in the target population in which the statistic estimated has an expectation that does not equal the true value.
Bias in AI: What it is, Types, Examples & 6 Ways to Fix it in 2024
Misinformation is false or inaccurate information that is mistakenly or inadvertently created or spread; the intent is not to deceive. Claire Wardle of First Draft News has created the helpful visual image below to help us think about the ecosystem of mis- and disinformation. Misinformation and disinformation is produced for a variety of complex reasons: Partisan actors want to influence voters and policy makers for political gain, or to influence public discourse for example, intentionally spreading misinformation about election fraud More clicks means more money. In some cases, stories are designed to provoke an emotional response and placed on certain sites "seeded" in order to entice readers into sharing them widely. In other cases, "fake news" articles may be generated and disseminated by "bots" - computer algorithms that are designed to act like people sharing information, but can do so quickly and automatically.
Automated labelling processes using natural language processing tools can also introduce bias if not carefully monitored. Label ambiguity, where multiple conflicting labels exist for the same data, further complicates the issue. Additionally, label bias occurs when the available labels do not fully represent the diversity of the data, leading to incomplete or biassed model training.
Care must be taken when using publicly available datasets, as they may contain unknown biases in labelling schemas. Overall, understanding and addressing these various sources of bias is essential for developing fair and reliable AI models for medical imaging. Guarding Against Bias in AI Model Development In model development, preventing data leakage is crucial during data splitting to ensure accurate evaluation and generalisation. Data leakage occurs when information not available at prediction time is included in the training dataset, such as overlapping training and test data. This can lead to falsely inflated performance during evaluation and poor generalisation to new data. Data duplication and missing data are common causes of leakage, as redundant or global statistics may unintentionally influence model training. Improper feature engineering can also introduce bias by skewing the representation of features in the training dataset. For instance, improper image cropping may lead to over- or underrepresentation of certain features, affecting model predictions.
For example, a mammogram model trained on cropped images of easily identifiable findings may struggle with regions of higher breast density or marginal areas, impacting its performance. Proper feature selection and transformation are essential to enhance model performance and avoid biassed development. Model Evaluation: Choosing Appropriate Metrics and Conducting Subgroup Analysis In model evaluation, selecting appropriate performance metrics is crucial to accurately assess model effectiveness. Metrics such as accuracy may be misleading in the context of class imbalance, making the F1 score a better choice for evaluating performance. Precision and recall, components of the F1 score, offer insights into positive predictive value and sensitivity, respectively, which are essential for understanding model performance across different classes or conditions. Subgroup analysis is also vital for assessing model performance across demographic or geographic categories. Evaluating models based solely on aggregate performance can mask disparities between subgroups, potentially leading to biassed outcomes in specific populations. Conducting subgroup analysis helps identify and address poor performance in certain groups, ensuring model generalizability and equitable effectiveness across diverse populations.
Addressing Data Distribution Shift in Model Deployment for Reliable Performance In model deployment, data distribution shift poses a significant challenge, as it reflects discrepancies between the training and real-world data. Models trained on one distribution may experience declining performance when deployed in environments with different data distributions. Covariate shift, the most common type of data distribution shift, occurs when changes in input distribution occur due to shifting independent variables, while the output distribution remains stable. This can result from factors such as changes in hardware, imaging protocols, postprocessing software, or patient demographics. Continuous monitoring is essential to detect and address covariate shift, ensuring model performance remains reliable in real-world scenarios. Mitigating Social Bias in AI Models for Equitable Healthcare Applications Social bias can permeate throughout the development of AI models, leading to biassed decision-making and potentially unequal impacts on patients.
What is AI bias? AI bias is an anomaly in the output of machine learning algorithms, due to the prejudiced assumptions made during the algorithm development process or prejudices in the training data.
What are the types of AI bias? More than 180 human biases have been defined and classified by psychologists. Cognitive biases could seep into machine learning algorithms via either designers unknowingly introducing them to the model a training data set which includes those biases Lack of complete data: If data is not complete, it may not be representative and therefore it may include bias. For example, most psychology research studies include results from undergraduate students which are a specific group and do not represent the whole population. Figure 1. Technically, yes. An AI system can be as good as the quality of its input data. If you can clean your training dataset from conscious and unconscious assumptions on race, gender, or other ideological concepts, you are able to build an AI system that makes unbiased data-driven decisions.
AI can be as good as data and people are the ones who create data. There are numerous human biases and ongoing identification of new biases is increasing the total number constantly. Therefore, it may not be possible to have a completely unbiased human mind so does AI system. After all, humans are creating the biased data while humans and human-made algorithms are checking the data to identify and remove biases. What we can do about AI bias is to minimize it by testing data and algorithms and developing AI systems with responsible AI principles in mind.
Diversity in the AI community eases the identification of biases. People that first notice bias issues are mostly users who are from that specific minority community. Therefore, maintaining a diverse AI team can help you mitigate unwanted AI biases. A data-centric approach to AI development can also help minimize bias in AI systems. Tools to reduce bias AI Fairness 360 IBM released an open-source library to detect and mitigate biases in unsupervised learning algorithms that currently has 34 contributors as of September 2020 on Github. The library is called AI Fairness 360 and it enables AI programmers to test biases in models and datasets with a comprehensive set of metrics. What are some examples of AI bias? Eliminating selected accents in call centers Bay Area startup Sanas developed an AI-based accent translation system to make call center workers from around the world sound more familiar to American customers. However, by 2015, Amazon realized that their new AI recruiting system was not rating candidates fairly and it showed bias against women. Amazon had used historical data from the last 10-years to train their AI model. Racial bias in healthcare risk algorithm A health care risk-prediction algorithm that is used on more than 200 million U. The algorithm was designed to predict which patients would likely need extra medical care, however, then it is revealed that the algorithm was producing faulty results that favor white patients over black patients. This was a bad interpretation of historical data because income and race are highly correlated metrics and making assumptions based on only one variable of correlated metrics led the algorithm to provide inaccurate results. Bias in Facebook ads There are numerous examples of human bias and we see that happening in tech platforms. Since data on tech platforms is later used to train machine learning models, these biases lead to biased machine learning models.
CNN staff say network’s pro-Israel slant amounts to ‘journalistic malpractice’
The effectiveness of shilling relies on crowd psychology to encourage other onlookers or audience members to purchase the goods or services or accept the ideas being marketed. Shilling is illegal in some places, but legal in others. Main article: Bias statistics Statistical bias is a systematic tendency in the process of data collection, which results in lopsided, misleading results. This can occur in any of a number of ways, in the way the sample is selected, or in the way data are collected.
Main article: Forecast bias A forecast bias is when there are consistent differences between results and the forecasts of those quantities; that is: forecasts may have an overall tendency to be too high or too low. It is usually controlled using a double-blind system , and was an important reason for the development of double-blind experiments. Reporting bias and social desirability bias edit Main articles: Reporting bias and Social desirability bias In epidemiology and empirical research , reporting bias is defined as "selective revealing or suppression of information" of undesirable behavior by subjects [88] or researchers.
This can propagate, as each instance reinforces the status quo, and later experimenters justify their own reporting bias by observing that previous experimenters reported different results. Social desirability bias is a bias within social science research where survey respondents can tend to answer questions in a manner that will be viewed positively by others. This bias interferes with the interpretation of average tendencies as well as individual differences.
The inclination represents a major issue with self-report questionnaires; of special concern are self-reports of abilities, personalities , sexual behavior , and drug use.
Если же вы видите регулятор напряжения в виде маленького потенциометра, это тоже фиксированный биас, потому что вы настраиваете с его помощью какую-то одну определенную величину напряжения.
Однако большинство компаний применяет в схеме своих усилителей технические решения, позволяющие использовать самые разные лампы с различными параметрами. Еще один способ настройки — это катодный биас. Его принцип заключается не в постоянном напряжении, подаваемом на решетку.
Вместо этого между катодом и землёй помещается резистор с большим сопротивлением. Это позволяет стабилизировать напряжение в лампе. Сама схема довольно сложная, поэтому описывать мы ее не будем.
Но если вам интересно, можете поискать в сети статьи про «Cathode bias». Фиксированный биас, как правило, используется в мощных усилителях, а катодный — в маломощных. Автоматическое смещение обычно получается в результате протекания тока через резистор, включенный между катодом лампы и общим проводником схемы т.
Настройка тока смещения необходима для правильной работы усилителя с теми параметрами, которые задал для него производитель. Именно его правильная работа и даст вам тот самый звук, ради которого вы амп и покупали. Вдобавок ко всему, правильный режим работы ламп продлевает им жизнь.
Лампы Существует 2 режима неправильной работы ламп — горячий недостаточное напряжение смещения, лампа пропускает больше электронов, чем нужно и быстро перегревается и холодный слишком сильное напряжение смещения, всё наоборот. В горячем режиме сигнал начинает перегружаться раньше, чем обычно, мощность усилителя падает, звук менее объёмный, лампа быстро перегревается и изнашивается. Побочный эффект горячего режима — усилитель звучит громче, кажется что он лучше пробивает, но при этом теряет в объёме.
Надо понимать, что это может быть едва заметно. В холодном режиме усилитель звучит стерильно, звук быстро затихает, и усилитель попросту не реализует весь свой проектный звуковой потенциал. Особенно это заметно на малой громкости — звук тонкий, зудящий, вялый и безжизненный.
Этот режим также снижает срок службы ламп, но не так радикально как горячий. Многие известные гитаристы прошлого сознательно разгоняли свои ампы до пределов, лампы в загнанном режиме работали по 6-7 часов и умирали — но благодаря этому мы слышим звуки их гитар, которые стали легендой. Увы, не всем такая роскошь в экспериментах не по карману.
Вслед за умершими лампами вполне может слететь и еще N-ное количество элементов схемы. Обилие всевозможных примочек также избавляет вас от необходимости насиловать усилитель для получения нужного звука. Если вы не являетесь квалифицированным электронщиком, такие эксперименты стоит забыть — напряжение анода на лампах как правило выше 300 вольт, и вы рискуете как минимум если вы достаточно везучи испортить свое здоровье, а как максимум — усилитель вас просто убьет, и поставят вам его вместо памятника.
У «классических» усилителей Marshall 2203 и SuperLead регулятор смещения расположен внутри шасси, причем так, что при его вращении отверткой легко по неосторожности угодить рукой в анодный выпрямитель — а там ни много ни мало, 460 вольт... Поэтому если ваш усилитель звучит недостаточно объёмно или слишком трудно перегружается, смена ламп и настройка биаса в принципе могут помочь.
I thought this would be an interesting graph to visualize because of this. Fortunately, most of the most popular sources can be considered reliable, with Weather. On the other side of things, we can see two of the more unreliable but popular websites are outliers — Fox News and the Daily Mail. Bias vs Reliability Image by Author On this chart, we can see measured bias vs measured reliability. The horizontal axis is divided by a line measuring reliability. Essentially, the closer to the middle a data point, the less biased it is. The higher up a data point, the more reliable that news source is considered.
On the opposite side, it seems the more biased a website is — whether right or left — the more fake news they spew out into the world to absorb. Monthly visits per person vs Reliability Image by Author Another attempt at trying to see evidence of an echo-chamber effect. Some websites such as the Palmer Report have a very high rate of repeated visits. Unfortunately for neutrality, several of these are assessed to be very unreliable, if not extremist. It also shows that most of the highly reliable news sources are not visited that frequently. The one exception to that is Weather.
Выбирайте лучшие предложения из каталога и используйте скидку уже сейчас!
Подробнее Вы заказываете больше, чем имеется у нас в наличии Вы заказываете больше, чем имеется у нас в наличии. Сейчас вы сможете перейти к оформлению заказа и приобрести 1 единицу товара.
Media Bias/Fact Check
usable — Bias is designed to be as comfortable to work with as possible: when application is started, its state (saved upon previous session shutdown) is restored: size and position of the window on the screen, last active data entry, etc. Везде По новостям По документам По часто задаваемым вопросам. Negativity bias (or bad news bias), a tendency to show negative events and portray politics as less of a debate on policy and more of a zero-sum struggle for power. Bias и Variance – это две основные ошибки прогноза, которые чаще всего возникают во время модели машинного обучения. Слово "Биас" было заимствовано из английского языка "Bias", и является аббревиатурой от выражения "Being Inspired and Addicted to Someone who doesn't know you", что можно перевести, как «Быть вдохновленным и зависимым от того, кто тебя не знает».
Bad News Bias
How investors’ behavioural biases affect investment decisions | Так что же такое MAD, Bias и MAPE? Bias (англ. – смещение) демонстрирует на сколько и в какую сторону прогноз продаж отклоняется от фактической потребности. |
Biased.News – Bias and Credibility | AI bias is an anomaly in the output of ML algorithms due to prejudiced assumptions. |
Selcaday, лайтстики, биасы. Что это такое? Рассказываем в материале RTVI | Connecting decision makers to a dynamic network of information, people and ideas, Bloomberg quickly and accurately delivers business and financial information, news and insight around the world. |
Искажение оценки информации в нейромаркетинге: понимание проблемы | media bias in the news. |
Bias Reporting FAQ | Institutional Equity & Intercultural Affairs | В этой статье мы рассмотрим, что такое информационный биас, как он проявляется в нейромаркетинге, и как его можно избежать. |
Термины и определения, слова и фразы к-поп или сленг к-поперов и дорамщиков
это источник равномерного напряжения, подаваемого на решетку с целью того, чтобы она отталкивала электроды, то есть она должна быть более отрицательная, чем катод. Discover videos related to биас что значит on TikTok. Новости Решения Банка России Контактная информация Карта сайта О сайте. Их успех — это результат их усилий, трудолюбия и непрерывного стремления к совершенству. Что такое «биас»? As new global compliance regulations are introduced, Beamery releases its AI Explainability Statement and accompanying third-party AI bias audit results. How do you tell when news is biased.
"Fake News," Lies and Propaganda: How to Sort Fact from Fiction
The Bad News Bias | Psychology Today | Negativity bias (or bad news bias), a tendency to show negative events and portray politics as less of a debate on policy and more of a zero-sum struggle for power. |
Bias in AI: What it is, Types, Examples & 6 Ways to Fix it in 2024 | Сервисы БИАС объективно повышают эффективность при выдаче займов/кредитов и существенно снижают бизнес риски, включая возможность взыскания на любом этапе. |
Examples Of Biased News Articles (Updated 2024) | Американский производитель звукового программного обеспечения компания BIAS Inc объявила о прекращении своей деятельности. |
Что такое bias в контексте машинного обучения? | Covering land, maritime and air domains, Defense Advancement allows you to explore supplier capabilities and keep up to date with regular news listings, webinars and events/exhibitions within the industry. |
Что такое технология Bias?
Bias и Variance – это две основные ошибки прогноза, которые чаще всего возникают во время модели машинного обучения. Covering land, maritime and air domains, Defense Advancement allows you to explore supplier capabilities and keep up to date with regular news listings, webinars and events/exhibitions within the industry. К итогам минувшего Международного авиасалона в Бахрейне (BIAS) в 2018 можно отнести: Более 5 млрд. долл. Bias: Left, Right, Center, Fringe, and Citing Snapchat Several months ago a colleague pointed out a graphic depicting where news fell in terms of political bias. [Опрос] Кто твой биас из 8TURN? Влияние биаса на звук заключается в том, что он размагничивает магнитную ленту до определенного уровня, что позволяет на ней сохраняться сигналу в более широком диапазоне частот, чем при отсутствии биаса.
Что такое биас
An analysis of 102 news sources measuring their bias, reliability, traffic, and other factors. Как правило, слово «биас» употребляют к тому, кто больше всех нравится из музыкальной группы. Learn how undertaking a business impact analysis might help your organization overcome the effects of an unexpected interruption to critical business systems. BBC Newsnight host Evan Davis has admitted that although his employer receives thousands of complaints about alleged editorial bias, producers do not act on them at all.
Bad News Bias
Он несет ответственность за всех остальных мемберов группы. Что такое макнэ или правильнее манэ? Макнэ или манэ — это самый младший участник группы. Кто такое вижуал?
Вижуал — это самый красивый участник группы. Корейцы очень любят рейтинги, всегда, везде и во всем. Лучший танцор группы, лучший вокалист группы, лучшее лицо группы.
Кто такой сасен? Сасен — это часть поклонников, особенно фанатично любящие своих кумиров и способные в ряде случаев на нарушение закона ради них, хотя этим термином могут называться сильное увлечение некоторыми исполнителями фанаты. Именно агрессивность и попытки пристального отслеживания жизни кумира считаются отличительными особенностями сасен.
Кто такие акгэ-фанаты? Акгэ-фанаты — это поклонники отдельных мемберов, то есть не всей группы целиком, а только только одного участника целой группы. Что означает слово ёгиё, эйгь или егё?
Ёгиё — это корейское слово, которое означает что-то милое. Ёгъё включает в себя жестикуляцию, голос с тональностью выше чем обычно и выражением лица, которое корейцы делают, чтобы выглядеть милашками. Егё Слово «йогиё» в переводе с корейского означает «здесь».
Еще корейцы любят показывать Пис, еще этот жест называют Виктория. Виктория жест Этот жест означает победу или мир. В Корее это очень распространенный жест.
Aigoo — слово, которое используется для того, чтобы показать разочарование. Слова и фразы, которые должен знать каждый дорамщик Что такое сагык? Сагык — это историческая дорама.
Например, это дорамы «Алые сердца Корё» и «Свет луны, очерченный облаком». AJUMMA — AJUSSHI аджума или ачжумма — аджоси или ачжосси — буквально выражаясь это означает тетя и дядя, но обычно слово используется в качестве уважительной формы, при общении с человеком более старшего возраста, либо не сильно знакомому. Аньон или Аньон хасейо — означает слова «привет» или «пока».
Анти произошло от английского слова anti — против. Это люди, которые резко негативно относятся к тому или иному артисту. Также это слово можно перевести как «нет» или «не в коем случае».
Айщ — это аналог русского «блин» или «черт».
Подробнее Вы заказываете больше, чем имеется у нас в наличии Вы заказываете больше, чем имеется у нас в наличии. Сейчас вы сможете перейти к оформлению заказа и приобрести 1 единицу товара. Это ваш город?
The rise of social media has undermined the economic model of traditional media. The number of people who rely upon social media has increased and the number who rely on print news has decreased. Messages are prioritized and rewarded based on their virality and shareability rather than their truth, [47] promoting radical, shocking click-bait content. Some of the main concerns with social media lie with the spread of deliberately false information and the spread of hate and extremism.
Social scientist experts explain the growth of misinformation and hate as a result of the increase in echo chambers. Because social media is tailored to your interests and your selected friends, it is an easy outlet for political echo chambers. GCF Global encourages online users to avoid echo chambers by interacting with different people and perspectives along with avoiding the temptation of confirmation bias. Although they would both show negative emotions towards the incidents they differed in the narratives they were pushing. There was also a decrease in any conversation that was considered proactive. Those initialized with Left-leaning sources, on the other hand, tend to drift toward the political center: they are exposed to more conservative content and even start spreading it. In the US, algorithmic amplification favored right-leaning news sources. The selection of metaphors and analogies, or the inclusion of personal information in one situation but not another can introduce bias, such as a gender bias.
Commentators on the right and the left routinely equate it with Stalinism, Nazism and Socialism, among other dreaded isms. In the United States, of late, another false equation has emerged. That would be the groundless association of secularism with atheism.
Actor who played law enforcement sniper was recorded walking around carrying rifle by the magazine. Further, they routinely publish anti-vaccination propaganda and conspiracy theories. Lastly, this source denies the consensus on climate change without evidence, as seen here: Climate change cultists are now taking over your local weather forecast. During Covid, this source has consistently published disinformation that is dangerous and ridiculous. Failed Fact Checks.
The U.S. media is an outlier
- Bad News Bias
- Methods & sources
- How investors’ behavioural biases affect investment decisions
- Who Are the Least Biased News Sources?
- BBC presenter confesses broadcaster ignores complaints of bias — RT UK News
- Другие события по теме #Арабского мира, #Выставки, #Международные
Искажение в нейромаркетинге
- Definition of Biased News
- Словарь истинного кей-попера
- K-pop словарик: 12 выражений, которые поймут только истинные фанаты | theGirl
- AI Can ‘Unbias’ Healthcare—But Only If We Work Together To End Data Disparity
Биас — что это значит
Это ваш выбор в качестве учителя. Датасеты — это учебники, по которым ваш ученик может учиться. И знаете что? У учебников есть авторы-люди, как и у наборов данных. Учебники отражают предвзятость их авторов. Как и у учебников, у наборов данных есть авторы.
Они собираются в соответствии с инструкциями, сделанными людьми. Представьте себе попытку обучить человека по учебнику, написанному предвзятым автором — вас удивит, если ученик в конце концов выразит некоторые из тех же предвзятых представлений? Чья это вина? В ИИ удивительно то, насколько он не предвзят в человеческой мере. Если бы у ИИ была своя личность и свои собственные мнения, он мог бы противостоять тем, кто подпитывает его примерами, из которых сочатся предрассудки.
В итоге, все наоборот : алгоритмы машинного обучения и ИИ — это просто инструменты для воспроизведения тех шаблонов, которые вы им показываете. Покажите им плохие примеры, и они будут их повторять. Предвзятость в смысле последних двух пунктов не исходит от алгоритмов машинного обучения и ИИ, она исходит от людей.
Советы для понимания К-поп фандомной культуры Если вы новичок в мире К-поп, не стоит пытаться сразу понять все специальные термины и понятия — это может вызвать большое затруднение. Лучше начать с основных понятий и постепенно расширять свой кругозор. Не стесняйтесь общаться с другими фанатами и задавать вопросы — это поможет вам лучше понять, что происходит в К-поп фандоме. Не нужно сильно приниматься за сердце, если ваш биас врекер заменяет вашего текущего биаса — это нормально и происходит довольно часто в мире К-поп. Никогда не стоит настаивать на личной жизни айдолов — это прямо встречается в понятии «сасен», и такие действия могут быть восприняты негативно.
Media bias is when journalists, news producers, and news outlets show bias in the way they report events and stories. There are several ways in which bias can show up in the media. You can see a story when you know what to look for. Things are getting harder to tell the truth. The picture was posted on social media and claimed that the paper ran different headlines. Straight News Straight news is a news that is straight. The main aim is to inform and pass the news. A plain account of news facts is written. The emphasis in a news story is on content. News stories use effective words to deliver the facts quickly. They average between 300 and 500 words. Crowd-sourced information, surveys, internal research, and use of third party sources such as Wikipedia are some of the components of the rating system. The AllSides rating for the "Center" is a bias. According to the Pew Research Center, the majority of people who are conservative view the BBC as equally trusted as distrusted. The survey found that conservatives have a higher level of distrust of news sources and consume a much narrower range of news sources. The American Enterprise Institute: A Study of Economic News in Bosnia and Herzegovina The American Enterprise Institute studied the coverage of economic news in the US by looking at a panel of 389 newspapers from 1991 to 2004, and a sub sample of the top 10 newspapers.
Разработка и внедрение IT—решений и сервисов для кредитных организаций, финансовых и страховых компаний Big-data Использование технологий BIG-data, включая технологии сбора, обработки и анализа данных Корпорациям Разработка и внедрение корпоративных информационных систем Разработка инновационного программного обеспечения, автоматизация бизнес процессов, оказание IT- услуг ЕГРЮЛ, ЕГРИП Предоставление сведений из Единого государственного реестра регистрации юридических лиц и ИП, а также дополнительные справки Финансовым организациям Кредитный скоринг и экспертная оценка кредитоспособности заемщика IT - консалтинг Комплексные услуги в области инфраструктуры и информационных систем Службе безопасности Обработка и предоставление данных, хранящихся в публичных источниках по ФЛ, ЮЛ и ИП Помощь с регистрацией как оператора персональных данных в реестре Роскомнадзора В нашем портфеле сервисов есть как оптимальный минимум, так и впечатляющий максимум для оптимизации Ваших бизнес-процессов!