Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома. В Копенгагене Нильс Бор, постулировавший квантовые скачки электронов, для обсуждения проблем новой физики собирал молодых физиков, среди которых был тогда еще советский физик-теоретик Георгий Гамов. Нильс Бор и созданная им школа физиков положили начало новому стилю исследовательской работы в теоретической физике.
Нобелевские лауреаты: Нильс Бор. Физик и футболист
С критикой этого парадокса выступил Нильс Бор, который привел свои аргументы в поддержку квантовой механики. Обзор основных научных достижений Нильса Бора, их влияния на развитие физики и научные открытия, которые сделали его выдающимся ученым. 18 ноября 1962 года скончался датский физик-теоретик Нильс Бор, один из создателей современной физики.
Нильс Бор: деятельность физика – лауреата нобелевской премии
Во время исследований Нильс Бор узнал, что уран-235 может расщепляться, высвобождая невиданную энергию. В Копенгагенском университете, куда Нильс Бор поступил в 1903 году, его считали «тяжёлым студентом». По характеру чрезвычайно мягкий и интеллигентный, Нильс Бор не высказывался критично по отношению к религии.
Нильс Бор: деятельность физика – лауреата нобелевской премии
Нильс Бор сообщил об открытии деления урана 85 лет назад. Однако мы решили остановить свой выбор на Терлецком — он мог бы произвести своей широкой эрудицией и осведомленностью нужное впечатление на Нильса Бора. Датский физик Нильс Бор смог описать современную модель атома благодарю сну о солнечной системе. Нильс Бор, которому Фриш сообщил об этом, в первый момент потерял дар речи. Получивший известность в качестве основоположника квантовой теории, Нильс Бор глубоко погружался не только в науку, но также в религию и философию. Главная» Новости» Наследный принц Дании Фредерик отмечает столетие Института Нильса Бора, вручая награды.
Бор Нильс. Книги онлайн
Эти черные дыры намного тяжелее обычных, но не такие массивные, как в центрах галактик, хотя всё равно смертоносные из-за того, что поглощают всё вокруг. И одна такая чёрная дыра промежуточной массы была обнаружена в момент ужасающего разрыва звезды в далёкой галактике. Учёные из института Нильса Бора Дания смоделировали обнаруженное ими разрушение звезды, и эта модель показала, что масса чёрной дыры составляет от 50 000 до 800 000 масс Солнца, что является колоссальным масштабом по сравнению с обычными чёрными дырами. Более того, благодаря этому открытию теперь астрономы смогут лучше изучить и понять эту неуловимую группу чёрных дыр средней массы.
Вместе с тем было положено начало тесной дружбе семей Боров и Резерфордов.
Общение с Резерфордом оставило неизгладимый отпечаток как в научном, так и в личностном плане на дальнейшей судьбе Бора, спустя много лет написавшего: Очень характерным для Резерфорда был благожелательный интерес, который он проявлял ко всем молодым физикам, с которыми ему приходилось долго или коротко иметь дело. По возвращении в Копенгаген Бор преподавал в университете, в то же время интенсивно работая над квантовой теорией строения атома. Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 года и носящем название «резерфордовского меморандума» [19]. Однако решающие успехи были достигнуты в конце 1912 — начале 1913 года.
Ключевым моментом стало знакомство в феврале 1913 года с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов. Впоследствии сам Бор говорил: Как только я увидел формулу Бальмера , весь вопрос стал мне немедленно ясен [20]. В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [21] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома.
В теории Бора можно выделить два основных компонента [22] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики , на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона. Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию.
Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [23]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 году Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех [24].
Нильс Бор и Альберт Эйнштейн вероятно, декабрь 1925 В 1949 году Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора: Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу. Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь.
Это наивысшая музыкальность в области мысли [25]. Весной 1914 года Бор был приглашён Резерфордом заменить Чарльза Дарвина , внука знаменитого естествоиспытателя , в качестве лектора по математической физике в Манчестерском университете Шустеровская школа математической физики [26]. Он оставался в Манчестере с осени 1914 года до лета 1916 года. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик.
Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27]. В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории.
Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели. Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете.
В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30].
Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33].
В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки [33].
Так что, если бы судьбе было угодно, в семье Боров было бы четыре поколения нобелевских лауреатов. Сегодня наша рубрика дошла до первого из увенчанных Боров. Нобелевская премия по физике 1922 года. Формулировка Нобелевского комитета: «За заслуги в исследовании строения атомов и испускаемого ими излучения». Нильс Бор родился в семье очень талантливого ученого Христиана Харальда Лаурица Петера Эмиля Бора — крупного физиолога и специалиста по химии дыхания.
Христиан открыл так называемый эффект Бора, суть которого заключается в том, что кривая насыщения крови гемоглобином зависит от кислотности крови. За свои исследования отец Нильса трижды номинировался на Нобелевскую премию по физиологии и медицине. Нужно сказать, что семья Боров вообще была исключительно талантлива и одарена во всем. Взять хотя бы брата Нильса, Харальда. Он не только стал математиком, но и был очень сильным датским футболистом. Впрочем, Нильс в юности тоже был приличным вратарем: в одно время Харальд и Нильс оба играли за датский футбольный клуб Akademisk Boldklub Gladsaxe этот профессиональный футбольный клуб и поныне выступает во втором дивизионе Датской футбольной лиги.
А вот байка о том, что будущий нобелиат играл за сборную Данию по футболу — неправда. Не играл, в отличие от Харальда, который с датской командой на олимпиаде 1908 года в Лондоне дошел до полуфинала. Уже в школе он активно интересовался физикой, математикой и философией: гости и друзья отца были соответствующие. Например, известный датский философ Харальд Геффтинг или специалист по скандинавско-славянским связям, лингвист Вильгельм Томсен. В 1903 году он поступил в Копенгагенский университет, и первая же его крупная исследовательская работа по измерению поверхностного натяжения воды по колебанию водной струи удостоилась Золотой медали Датской королевской академии наук 1905. Это была чисто теоретическая работа, но в последующие два года Бор оккупировал физиологическую лабораторию отца и дополнил работу экспериментальной частью.
Пользуясь случаем, хочется развеять давно гуляющую по Интернету байку о том, как студент-Бор поставил на место профессора физики в университете видимо, Кристиана Кристиансена, в 1884 году подтвердившего закон Стефана-Больцмана — в те годы он был единственным профессором физики , и как его поддержал Резерфорд , к которому Бор со своим профессором обратились в качестве третейского судьи. В истории рассказывается, как студент Бор отказывался решать «скучную» физическую задачу о том, как измерить высоту башни при помощи барометра стандартным методом измерить давление у подножия и на вершине , а предлагал другие, «издевательские» — бросить барометр с башни и замерить время падения, измерить тень, отбрасываемую барометром и тень, отбрасываемую башней, и сам барометр — и по пропорции узнать высоту башни, и даже обменять барометр на информацию о высоте башни у смотрителя здания.
В этот момент Нильс Бор... Естественно, матч был очень важен и, разумеется, «Академиск» проиграл.
Судьба — штука коварная: та игра поставила жирный крест на футбольной карьере студента и заставила будущего лауреата Нобелевской премии оставить спорт. Шансом Харальд воспользовался на все сто. В составе родной команде младший брат не останавливался феерить и вскоре получил приглашение в сборную страны. К этому времени он стал одним из самых популярных и узнаваемых футболистов Дании.
При этом наука продолжала волновать его так же, как и спорт. Все свободное от футбола время он посвящал математике. В 1908 году Харальд в составе сборной Дании отправился на Олимпийские игры в Лондон. В финале турнира против них играли датчане, пройдясь до этого катком по сборной Франции 26:1.
К сожалению для скандинавов, «золото» британцы с трудом, но оставили дома, победив соперника со счетом 2:0. Но и этот результат стал ошеломляющим для северной страны. Дома серебряных призеров встречали, как настоящих героев, а Харальд Бор на том турнире забил свои единственные голы за сборную.
ФутБОРный клуб. Как великие ученые оставили след в спорте
В его основа лежит теория о том, что микрочастица получает свои динамические характеристики в зависимости от того, во взаимосвязи с какими объектами она пребывает. Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна. В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики. Настолько, что весь его институт полностью изменил направление своих разработок. В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс. Вторая мировая и ядерное оружие Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны.
Вместе с братом Бор помогал им обустроиться в Копенгагене. Под угрозой оказался и сам физик, ведь его мать имела еврейские корни. Но он решил оставаться в городе до последнего и защищать свой институт. В 1941 у него состоялась встреча с Вернером Гейзенбергом, этот физик в то время сотрудничал в нацистской Германией по вопросам разработки ядерного оружия. Но Бор помогать не согласился.
В 1943 они вместе с сыном бежали в США, где до конца войны жили под другими именами и разрабатывали атомную бомбу. Уже работая над проектом, он осознал опасность такого оружия, поэтому написал не одно письмо Черчиллю и Рузвельту, чтобы те с осторожностью относились к атомной энергии. Разработкой Бора заинтересовалась и другая сторона — СССР, его даже приглашали приехать туда для обмена опытом, что в США расценили как попытку шпионажа. Последние годы физик провёл, выступая с лекциями и в написании философских статей. Своё самое важное, как он считал, открытие — принцип дополнительности, он хотел применить в различных сферах: биологии, психологии и культуре.
Умер в возрасте 77 лет от сердечного приступа. Прах Бора находится в Копенгагене в семейной могиле. Интересные факты Бор очень часто вступал в дискуссии с Эйнштейном. Часто они заканчивались на повышенных тонах, тем не менее оба считали друг друга близкими друзьями.
Второй опыт был куда более удачным.
Операция «Ганнерсайд» была организована обстоятельнее. В течение января — февраля 1943 года в Норвегию были заброшены сразу несколько групп диверсантов, которые в ночь с 27 на 28 февраля в тяжелейших условиях смогли проникнуть на территорию предприятия Norsk Hydro, установить взрывные устройства и произвести их подрыв. В результате саботажа завод на несколько месяцев был вынужден остановить производство. В ноябре 1943-го британцы произвели и две массированные бомбардировки объекта. В итоге немцы решили эвакуировать его оборудование и оставшиеся запасы тяжелой воды в рейх, но и здесь норвежское сопротивление показало себя самым достойным образом.
Таким образом, нацисты окончательно лишились ключевого компонента для своей ядерной программы, что поставило на ней крест. Все это время в Берлине Гейзенберг продолжал свои эксперименты по получению цепной реакции. Параллельно в городе строился специальный бункер для «урановой машины», но тяжелейшая для рейха ситуация на фронтах, нехватка финансов и материалов существенно тормозили работу ученых. В январе 1945 года группу Гейзенберга и уже практически законченный ею реактор B VIII эвакуировали из германской столицы вглубь страны, в деревню Хайгерлох недалеко от швейцарской границы. Работа не останавливалась даже в условиях уже проигранной войны.
Последнюю попытку запустить цепную реакцию немцы предприняли 23 марта 1945 года, она вновь закончилась неудачей из-за недостаточного количества урана и тяжелой воды. В мае — июне 1945 года Гейзенберг и 9 соратников были арестованы американцами и в ходе операции «Эпсилон» вывезены на территорию Великобритании. Нацистский реактор в Хайгерлохе. Их поселили в поместье Фарм-Холл недалеко от Кембриджа. Здание, где жили германские физики, было буквально напичкано подслушивающей аппаратурой.
Задачей «Эпсилона» было определить, насколько близко немцы подобрались к созданию атомной бомбы. Для обеих сторон результат оказался удивительным. Американцы поняли, что никакой угрозы нацистского ядерного гриба и близко не существовало, а Гейзенберг с коллегами были буквально шокированы бомбардировками Хиросимы и Нагасаки. Они были уверены, что опережают конкурентов, и даже представить себе не могли, насколько на самом деле в США ушли вперед. Поместье Фарм-Холл.
Почему Гитлер не получил ядерной бомбы Вопрос, реально ли было создание Третьим рейхом атомного оружия, волнует не только любителей альтернативной истории Второй мировой войны. Действительно, еще в начале 1940-х нацисты опережали своих противников. Возможно, при определенных обстоятельствах например, если бы Гитлер не ввязался бы в войну с Советским Союзом Германия смогла бы с помощью концентрации ресурсов всей Европы, лежащей у ее ног, в течение нескольких лет подойти к созданию ядерной бомбы. Другой вопрос, насколько реальным был продолжительный мир с СССР и сколь трезво оценивали потенциал «уранового проекта» в высшем руководстве Третьего рейха. В конце концов, среди историков, изучавших проблему, сложилось три точки зрения на причины немецкого атомного провала.
Послевоенные статьи и выступления Вернера Гейзенберга и его соратников настойчиво проталкивали мысль о пассивном саботаже учеными своей работы. Мол, германские физики понимали, чем грозит их успех человечеству, поэтому сознательно тормозили свою работу. В общем-то, в такой позиции ничего удивительного нет.
На вопрос, понравилось ли ему пиво, Бор хитро ответил: «Главное, что не Tuborg! Поэтому все естественники поддерживают своих благодетелей и пьют только Carlsberg.
Датчанин обладал неутомимым темпераментом, был добрым и отзывчивым человеком. Многие современники отзывались о Боре как о преданном товарище с прекрасным чувством юмора. Он умел разрядить самую напряжённую обстановку и никогда не чурался общества. О многочисленных шутках датчанина рассказывал и другой знаменитый физик, президент Королевской академии наук, профессор Эрнест Резерфорд, который был одним из учителей Нильса Бора. Позднее они близко сдружились — до такой степени, что Бор провёл часть своего свадебного путешествия в гостях у Резерфорда. После женитьбы с Маргарет Нёрлдунд Резерфорды и Боры стали дружить семьями. Несмотря на замечательное чувство юмора и добродушие, на публике Бор не чувствовал себя столь же уверенно, как в кругу товарищей. Современники признавались, что Бор настолько смущался во время публичных выступлений, что его речи становились скомканными и непонятными. Кстати, его брат Харальд был превосходным лектором. Нильс Бор обладал и пытливым умом. Он с энтузиазмом брался за любое новое дело, тематика которого была ему незнакома. Например, в свой первый приезд в Великобританию Бор практически не знал английского языка. В первой попавшейся ему книжной лавке он отыскал диккенсовского «Дэвида Копперфилда» на языке оригинала и в первый же вечер своей поездки принялся читать его, взяв на вооружение толстый англо-датский словарь. Датский физик был ярым противником фашизма, хотя, конечно, и не афишировал этот факт. Он был уверен, что национализм и фашизм являются самой большой опасностью для людского рода.
Не только таблица Менделеева: 6 великих открытий, сделанных во сне
Бор открыл структуру атома в 1913 году. Оказавшись в Манчестерском университете, Бор стал работать в лаборатории Эрнеста Резерфорда. Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям. Начиная с 1944 года Нильс Бор включается в активную политическую борьбу. В 1917 года Нильс Бор вошел в Датское королевское общество, а с 1939 года стал его президентом. В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам[59].
Датский физик Бор Нильс: биография, открытия
Начиная с 1944 года Нильс Бор включается в активную политическую борьбу. директора института академика Петра Леонидовича Капицы - проходит в конференц-зал и поднимается на сцену. Нильс Бор, открытия которого, безусловно, изменили физику, пользовался огромным научным и нравственным авторитетом. В данном разделе вы найдете много статей и новостей по теме «Нильс Бор». Датский физик Нильс Бор 28 февраля 1913 года предложил свою теорию строения атома, в которой электрон в атоме не подчиняется законам классической физики. В 1921 году Бор открыл институт имени себя, в котором, получив финансирование от датских властей, впервые подверг экспериментальной проверке теорию квантовой бухгалтерии.