Новости деление ядер урана

Изучение деления ядра атома урана показало, что при этом выделяется 3–4 нейтрона: 238U → 145La + 90Br + 3n. Многим ученым из Колумбийского университета было ясно, что они должны попытаться обнаружить энергию, выделяющуюся при делении ядра урана в результате нейтронной бомбардировки. В результате каждого деления ядра урана вместо одного атома образуются два новых, суммарный объём которых примерно в два раза больше объёма разделившегося атома, поскольку все атомы химических элементов, в общем-то, имеют примерно одинаковые объёмы. Деление ядер урана под воздействием нейтронов открыли немецкие ученые Отто Ган и Фриц Штрассман в 1938 году.

Глава пятая ОТКРЫТИЕ СПОНТАННОГО ДЕЛЕНИЯ УРАНА

В такой реакции нейтрон, попавший в ядро, вызывает его деление, в результате которого возникают новые нейтроны, которые в свою очередь также вызывают новые деления ядер, и так далее. Цепная реакция деления. В ядрах урана возможно и спонтанное деление, без возбуждения нейтроном. Удельная энергии связи у более легких элементов выше, а значит, ядру урана энергетически «выгодно» распасться на более легкие ядра. Этому препятствуют ядерные силы, нужен внешний возбуждающий импульс, но существует ненулевая вероятность, что в ядре начнется распад и без такого импульса. Что мы узнали? Ядра урана при бомбардировке нейтронами способны делиться на более легкие части. Механизм деления описывается в рамках капельной модели ядра. Тест по теме.

К концу 1930-х годов физики разработали методы замедления нейтронов, достаточные для захвата и обогащения смесей изотопов урана из природных ресурсов с образованием критической массы урана-235. Они также придумали, как контролировать цепную реакцию, чтобы экспоненциальное производство нейтронов не вышло из-под контроля, в случае чего процесс мог бы стать взрывоопасным. В течение последующего десятилетия технологические достижения в области деления ядер использовались для создания новых классов супероружия. Только после Второй мировой войны инженеры вновь обратили внимание на возможность использования процесса деления ядер для устойчивого производства тепла, пригодного для выработки электроэнергии. Подобно тому, как пар, получаемый при сжигании ископаемого топлива в котле, вращает турбину, соединённую с электрогенератором, пар из «ядерного котла» также можно использовать для выработки электроэнергии. Градирни атомной электростанции во Франции С течением времени совершенствование технологий позволило повысить эффективность и безопасность, в некоторых случаях отказаться от замедления нейтронов, чтобы расщепляющийся материал мог захватывать более быстрые частицы.

Сегодня в мире эксплуатируется около 440 атомных электростанций, из них только в США - около 100. Однако существуют издержки, которые могут ограничить возможности использования атомной энергии для спасения от климатического кризиса. В чём проблема ядерной энергетики? Когда речь идёт о поиске экономически эффективных альтернатив ископаемому топливу с низким выбросом парниковых газов, есть варианты и похуже, чем атомная энергетика. Важно отметить, что есть варианты и получше - современные технологии возобновляемой энергетики, такие как солнечная и ветровая, которые с каждым годом становятся все дешевле. Проблемы атомной энергетики делятся на три категории - отходы, риск и стоимость.

Приведём примеры каждой из них. Отходы Одна из самых больших озабоченностей общественности по поводу атомной энергетики в последние десятилетия связана с тем, что делать с урановым топливом после того, как оно настолько насытится делящимися продуктами, что перестанет быть эффективным для производства энергии. Высокоактивные отходы содержат изотопы, радиоактивность которых может снизиться за тысячи лет до уровня, примерно соответствующего уровню радиоактивности руды, из которой они были получены. В настоящее время в мире хранится более четверти миллиона тонн высокорадиоактивных отходов, ожидающих захоронения или переработки.

Схема устройства ядерного реактора на медленных нейтронах. Стрежни с кадмием или бором, поглощающие нейтроны, вводят в активную зону.

Этот процесс позволяет контролировать скорость цепной реакции.

Умы взбудоражило сообщение, что Ган и Штрассман в Германии открыли деление ядер урана нейтронами. Они пытались получить новый элемент, а натолкнулись на новое явление. Явление, интересное прежде всего своим энерговыделением — огромным количеством энергии, высвобождавшейся при каждом элементарном акте. Курчатов поручил нам с Флеровым повторить эти опыты, воспроизвести их. Уран был в виде урановой смолки , радон-бериллиевый источник нейтронов — тоже, а на регистрирующих приборах мы оба к тому времени собаку съели. Результаты Гана и Штрассмана заинтересовали не только Курчатова, заинтересовали прежде всего энергетической стороной дела. И естественно, многие физики задумались, а не могут ли эти ядра делиться сами по себе, спонтанно. Нильс Бор рассчитал даже время жизни урана по спонтанному делению и получил 1022 лет. Либби попробовал обнаружить спонтанное деление экспериментально, но сумел установить лишь нижний предел — 1014 лет — и прекратил опыты.

Начиная свои опыты, мы не ставили целью открытие спонтанного деления, а искали энергетический «порог» деления урана, т. В нашем распоряжении была обычная ионизационная камера и обычная по тем временам регистрирующая радиоаппаратура, смонтированная собственноручно. В каждом приличном опыте положено прежде всего смотреть нулевой эффект, т. И всякий раз, когда измеряли пулевой эффект, он не был равен нулю: камера нет-нет, да щелкнет! Объясняли это чем угодно, но только не спонтанным делением: проезжими трамваями, космическим излучением, несовершенством усилительной аппаратуры, влиянием посторонних нейтронных источников. Когда первый раз сообщили об этом Курчатову, реакция его была не слишком положительной: «Это какая-то грязь». От греха подальше, т. Но и там камера щелкала. Остались трамваи, космика, осталась та же аппаратура, но исключать возможность нового явления — самопроизвольного деления ядер — тоже не было оснований кроме теоретических расчетов Бора. Идея эта родилась при обсуждении результатов опытов с Курчатовым.

Эффект был — слабый, но был! Тут же придумали опыт, в сущности очень простой: решили сделать ионизационную камеру многослойной, как радиоконденсатор. Если «щелчки» от урана, то увеличение количества урана в камере должно привести к более частым щелчкам! Щелчки стали чаще. Это усиливало версию о новом явлении, но уверенности у нас не было. Сообщение о последних опытах и дальнейших планах нашей работы Курчатов встретил серьезно и, я бы сказал, сердито: «Если действительно так, если наблюдается у вас новое явление, то это... Это бывает раз в жизни, и то не у всех.

Деление ядра атома урана

Деление ядра атома урана Период полураспада урана-241, который образовался в результате взаимодействия урана-238 с платиной-198, составляет около 40 минут.
Открытие спонтанного деления ядер урана За открытие спонтанного деления урана К.А. Петржак в 1946 году был удостоен Государственной премии.
Открыт новый изотоп урана: Наука: Наука и техника: Объект «Магия деления ядра урана» был создан четко в установленный договорной срок и сдан заказчику без каких-либо замечаний с его стороны.
«Тревожный звоночек»: физик прокомментировал возобновление ядерных реакций в Чернобыле Осколки деления ядер урана обладают высокой кинетической энергией, которая при их торможении передается топливу.

«Тревожный звоночек»: физик прокомментировал возобновление ядерных реакций в Чернобыле

Отсутствие утечки радиации обусловлено работой теплоносителя I II по замкнутым циклам. Турбина атомной электростанции используется в качестве тепловой машины, которая определяет по второму закону термодинамики общую эффективность станций.

Цепная реакция Физика 9 класс 55 Инфоурок Видеоуроки являются идеальными помощниками при изучении новых тем, закреплении материала, для обычных и факультативных занятий, для групповой и индивидуальной работы.

Они содержат оптимальное количество графической и анимационной информации для сосредоточения внимания и удержания интереса ребят без отвлечения от сути занятия. Каждый видеоурок озвучен профессиональным мужским голосом, четким и приятным для восприятия.

Изредка эти ядра могут самопроизвольно расщепляться, подобно тому, как они самопроизвольно излучают альфа-частицы при радиоактивном распаде, то есть расщепляться без какого-либо явного внешнего воздействия, как, например, при поглощении нейтрона. Хотя этот процесс является редким и не совсем до конца понятным, его учет тем не менее также необходим при конструировании ядерного реактора, поскольку этот физический процесс является дополнительным источником нейтронов. Так, в одном грамме природного урана спонтанное деление происходит33 один раз в 100 с, и в результате каждого такого деления образуются два или три нейтрона. Следовательно, в большом ядерном реакторе, содержащем от 105 до 106 кг урана, каждую секунду образуются миллионы нейтронов дополнительно к тем, которые возникают в результате цепной реакции.

Флеровым и Петр-жаком.

Образовавшиеся ядра имеют переизбыток нейтронов и излучают их. Показать больше.

Видео-стенд "Магия Деления ядра урана" в парке "Патриот"

Слайд 5Деление ядер урана Первым открытым процессом деления ядра урана было вынужденное деление. Польша готова разместить у себя заводы по производству снарядов с ураном. Новости. Физики синтезировали изотоп урана с избытком нейтронов впервые с 1979 года. Для научного сообщества эти строчки были лишь необузданной фантазией поэта, однако всего через семнадцать лет, в 1938 году, Отто Ган (, 1879–1968) и Фриц Штрассман (, 1902–1980) открыли деление ядер урана.

Как применяют уран

  • 2. Цепная ядерная реакции:
  • 1. Механизм деления ядра урана:
  • 14. Первый в мире ядерный реактор
  • Делиться – выгодно
  • Деление ядер урана

«Тревожный звоночек»: физик прокомментировал возобновление ядерных реакций в Чернобыле

такие жуткие последствия ждут население после применения снарядов с обедненным ураном, которые Британия собирается поставить украинской армии. Открытие деления урана. Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Для осуществления ценной реакции пригодны лишь ядра Цепная реакция деления ядер урана. Происходит это так: тепловыделяющие сборки (ТВС) разрезают, куски помещают в концентрированную азотную кислоту и получают раствор, содержащий уран, плутоний и многочисленные продукты деления.

Деление тяжелых ядер

  • В чём проблема ядерной энергетики?
  • Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле
  • Взрыв на уральском заводе по обогащению урана - 14 июля 2023 - НГС.ру
  • Деление ядер урана
  • Механизм деления ядер урана — урок. Физика, 11 класс.
  • Парадоксы ядерной гонки

Справочник химика 21

Вынужденное деление ядер урана нейтронами сопровождается вылетом нескольких нейтронов, которые, взаимодействуя с соседними ядрами урана, вызывают их деление. Слайд 5Деление ядер урана Первым открытым процессом деления ядра урана было вынужденное деление. Однако, сегодня уран высоко ценится за способность его ядер к делению и выделению тепла — этот материал является основой атомной энергетики и атомного оружия. Крайне существенным является то обстоятельство, что нейтроны, испущенные при делении уранового ядра (так называемые вторичные нейтроны деления), способны вызывать деление новых ядер урана. Именно Нильс Бор выступил с гипотезой о том, что деление ядер урана медленными нейтронами происходит только в случае урана-235.

Как выглядит самый страшный сценарий

  • Нашли ошибку или баг? Сообщите нам!
  • Спонтанное деление урана
  • Как добывают уран
  • Дирижер атомного взрыва: тело и жизнь самой тайной части ядерного заряда
  • Глава пятая ОТКРЫТИЕ СПОНТАННОГО ДЕЛЕНИЯ УРАНА . Курчатов
  • Химия и химическая технология

§ 227. Деление урана

Речь идет о продолжающихся реакциях деления в массе расплава. Он образовался, когда после аварии урановые стержни с циркониевыми оболочками вместе с графитовыми управляющими стержнями и песком, которым засыпали активную зону, расплавились и превратились в лаву. Эта лава растеклась по подвальным помещениям реакторного зала и затвердела. Спустя год после аварии над четвертым энергоблоком построили саркофаг из стали и бетона объект «Укрытие» , но он обеспечивал недостаточную защиту — в частности, через него внутрь попадала дождевая вода. Поскольку вода замедляет нейтроны, ее попадание ускоряло деление ядер урана в расплаве. Поэтому из-за сильных дождей в районе станции резко возрастал объем нейтронов. Проблема была настолько серьезной, что в 1990 году ученые обработали реакторный зал раствором нитрата гадолиния он поглощает нейтроны , а после установили и специальные разбрызгивающие устройства.

За историю работы человечества с делящимися материалами такие аварии возникали неоднократно, поэтому можно довольно уверенно предсказать, что произойдет. Как выглядит самый страшный сценарий Что будет, если все же ускоряющаяся цепная реакция запустится где-то в объеме топливосодержащей лавы? В какой-то момент нейтронный поток начнет экспоненциально расти, и за несколько миллисекунд мощность цепной реакции достигнет киловатта или мегаватта — в общем, достаточного уровня, чтобы быстро прогреть топливный материал и окружающую среду. Сработают отрицательные физические связи: ядерный допплер-эффект в уране и выкипание воды, соотношение генерации новых нейтронов в делении урана и их поглощения станет меньше единицы — и реакция остановится. Весь этот цикл займет не больше секунды, но будет заметен только приборам наблюдения по резкому всплеску нейтронного и гамма-излучения. Затем «очнувшийся» материал остынет и может вновь заполниться водой. Соответственно, цикл с ростом мощности реакции и прогревом может повториться — и так будет происходить, пока содержание воды в этой области станет слишком маленьким для эффективного замедления нейтронов. Если это и происходило в 2016-2019 году, то в процессе выпаривания воды из ЛТСМ в объеме Нового Безопасного Конфаймента должна была вырасти концентрация радиоактивных аэрозолей, которые наверняка задержала система фильтрации НБК и заметили бы датчики системы контроля ядерной и радиационной безопасности, но никаких прямых данных у нас об этом нет. При этом вышеописанный сценарий — это цепь из крайне смелых допущений. Резюмируя, можно сказать, что за 35 прошедших с аварии лет, исследователи, видимо, достаточно хорошо знают об угрозах в останках четвертого энергоблока и барьерах на пути их распространения. Рост нейтронного потока был заранее предсказан расчетно и не является показателем роста опасности, а скорее подтверждает правильность заложенных моделей.

Речь идет о продолжающихся реакциях деления в массе расплава. Он образовался, когда после аварии урановые стержни с циркониевыми оболочками вместе с графитовыми управляющими стержнями и песком, которым засыпали активную зону, расплавились и превратились в лаву. Эта лава растеклась по подвальным помещениям реакторного зала и затвердела. Спустя год после аварии над четвертым энергоблоком построили саркофаг из стали и бетона объект «Укрытие» , но он обеспечивал недостаточную защиту — в частности, через него внутрь попадала дождевая вода. Поскольку вода замедляет нейтроны, ее попадание ускоряло деление ядер урана в расплаве. Поэтому из-за сильных дождей в районе станции резко возрастал объем нейтронов. Проблема была настолько серьезной, что в 1990 году ученые обработали реакторный зал раствором нитрата гадолиния он поглощает нейтроны , а после установили и специальные разбрызгивающие устройства.

Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. При делении ядра , которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер уран: Скорость цепной ядерной реакции характеризуется коэффициентом размножения нейтронов k — это отношение числа нейтронов в данном этапе цепной ядерной реакции к их числу в предыдущем этапе. Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется: числом нейтронов, образующихся в каждом элементарном акте; условиями, в которых протекает реакция — часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Самоподдерживающаяся цепная реакция в уране с повышенным содержанием может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. Для чистого критическая масса составляет около 50 кг при минимальном объеме шара радиусом 9см. Критическую массу урана можно во много раз уменьшить, если использовать замедлители нейтронов, так как нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D2O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду. Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов.

Этому ядерному реактору два миллиарда лет: Как такое может быть?

Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. Выделение энергии в ядерных реакторах происходит за счёт деления ядер урана и плутония. Прежде всего, была экспериментально доказана справедливость гипотезы о делении ядра урана и непосредственно измерена энергия деления. 19 января 2019 Ирина С. ответила: Явление деления ядер урана при облучении их нейтронами было открыто немецкими физиками Отто Ганом и Фрицем Штрассманом в 1939 году.

Парадоксы ядерной гонки

15 интригующих фактов об уране - Слабый радиоактивный металл | Для осуществления ценной реакции пригодны лишь ядра Цепная реакция деления ядер урана.
1. Механизм деления ядра урана: Японские исследователи синтезировали уран-241, запустив образец урана-238 на ядрах платины-198 с помощью ускорительной системы RIKEN.

Деление ядер урана презентация

Если суммарная энергия связи ядер-осколков меньше, чем энергия связи ядра урана, то реакция сопровождается выделением огромной энергии в виде кинетической энергии осколков, энергии гамма-квантов и энергии вторичных нейтронов. Обнаружено, что при бомбардировке нейтронами урана-235 образуется 80 различных ядер. Цепная реакция деления урана В январе 1939 года Ферми высказал мысль, что при делении урана-235 следует ожидать испускания быстрых нейтронов и что, если число вылетевших нейтронов будет больше, чем число поглощенных, путь к цепной реакции будет открыт. Поставленный эксперимент подтвердил наличие быстрых нейтронов. Вынужденное деление ядер урана нейтронами сопровождается вылетом нескольких нейтронов, которые, взаимодействуя с соседними ядрами урана, вызывают их деление. Цепная ядерная реакция — самоподдерживающая реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие все новые и новые ядра. С целью уменьшения вылета нейтронов с куска урана увеличивают массу урана. Минимальное значение массы урана, при котором возможна цепная реакция, называется критической массой. В зависимости от устройства установок и типа горючего критическая масса изменяется от 200 г прт наличии отражателя нейтронов до 50 кг.

Образование плутония Плутоний Pu — серебристо-белый радиоактивный металл группы актиноидов, теплый на ощупь из-за своей радиоактивности. В природе встречается в очень малых количествах в уранитовой смолке и других рудах урана и церия, в значительном количестве получают искусственно. Поэтому встал вопрос, как использовать в ядерной энергетике уран-238. В процессе радиоактивных превращений образуется изотоп нептуния, а затем плутония, который в дальнейшем используется в качестве ядерного топлива. При этом при делении 1 кг урана получается 1,5 кг плутония.

Образовавшиеся части называются осколками деления. Неустойчивость тяжелых ядер обусловлена взаимным отталкиванием большого числа протонов, находящихся в ядрах. Деление тяжелого ядра на два осколка сопровождается выделением энергии порядка 1 МэВ на каждый нуклон.

Это следует из того, что удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ. Например, при делении ядра урана выделяется энергия порядка 200 МэВ. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. Такой лавинообразный процесс называется цепной реакцией. Условием возникновения цепной реакции является наличие размножающихся нейтронов. Коэффициентом размножения нейтронов k называется Коэффициент размножения зависит от природы отношение числа нейтронов, возникающих в некотором звене делящегося вещества, а для данного изотопа — от его реакции, к числу таких нейтронов в предшествующем звене. Такая реакция называется развивающаяся реакция.

Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществления цепной реакции, называется критической массой. Цепная реакция в уране с повышенным содержанием урана235 может развиваться только тогда, когда масса урана превосходит критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг. Применение замедлителей нейтронов и специальной оболочки из вобериллия, котораяесли Критическую массу урана можно много раз уменьшить, отражает так нейтроны, позволяет снизить использовать называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся критическую массу до 250при г. Наилучшим замедлителем нейтронов является тяжелая вода D2O.

Пожаловаться На станции «Динамо» Московского метрополитена в 1940 году было открыто спонтанное деление ядер урана-235. Спонтанное деление было открыто в июне 1940 года советскими физиками Г. Флёровым и К.

Схема устройства ядерного реактора на медленных нейтронах. Стрежни с кадмием или бором, поглощающие нейтроны, вводят в активную зону. Этот процесс позволяет контролировать скорость цепной реакции.

Справочник химика 21

Открытие деления ядер урана Большинство природных радиоактивных элементов сильно распылено. Поэтому добыча весовых количеств этих элементов уже представляет собой сложности. Изучение продуктов распада еще труднее, поскольку все природные радиоактивные элементы имеют длительные периоды полураспада, и получение весовых количеств веществ, пригодных для исследования, происходит крайне медленно. Поэтому интенсивное изучение радиоактивных распадов началось лишь после открытия нейтрона в 1932 г. Нейтрон не имеет электрического заряда, и способен гораздо легче попадать в зону действия ядерных сил, чем заряженные протоны или альфа-частицы.

Появляется возможность ускорить ядерные реакции, облучая пробу вещества нейтронами. В результате таких исследований в 1938 г О. Ганом и Ф. Штрассманом было установлено, что при облучении урана нейтронами образуются боле легкие элементы, с массовыми числами меньше, чем массовое число урана, как правило, в полтора раза, в основном четвертого-пятого периодов таблицы Менделеева.

Берегите близких, объясните знакомым и родным, что опасности нет. Ситуация находится под контролем. Больше сотни рабочих, которые находились на заводе в момент ЧП, отправили на обследование в больницу Новоуральска. Из-за инцидента многих врачей, находившихся на выходном или в отпуске, просят срочно выйти на смену. По информации источника E1. RU, рабочих, которые должны были заступить на смену утром, не пустили на предприятие. Последствия ЧП устраняет ночная бригада. В Росатоме, комментируя ЧП на предприятии в Новоуральске, заявили, что провели замеры радиационного фона.

В процессе выстрела и полета во взрывателе снаряда снимается целый ряд предохранений, последнее уже через пару сотен метров от дула. Это называется дальним взведением, и исключает взрыв снаряда на борту, в стволе и вблизи самолета. Для ядерного боеприпаса это тем более важно. Он не готов к взрыву ни при эксплуатации, ни сразу после отделения от носителя. Ядерный заряд не даст атомного взрыва в любой нештатной ситуации. Даже если его уронить с высоты на скалы, сунуть в доменную печь, обстрелять из любого оружия, обложить взрывчаткой и взорвать, или близко сработает другой ядерный заряд. Карпенко Взрывобезопасность заряда обеспечивает система предохранения и взведения. Она исключает случайный или преждевременный подрыв заряда, взрыв из-за ложных данных, несанкционированных действий и любых нештатных причин. Она же переводит заряд в стадии все большей готовности к взрыву перед его срабатыванием. И эта система также входит в состав блока автоматики. Ядерный заряд полностью готов взорваться только непосредственно перед взрывом Для предохранения и взведения заряда в блоке автоматики используются комплексы различных коммутационных устройств. Это электромагнитные реле разных типов и электромагнитные выключатели. Они образуют сложные электрические цепи с возможностью их включения и отключения. Кроме коммутационных, есть другие устройства, входящие в широкий спектр электромеханических приборов автоматики. Не все они размещены в самом блоке автоматики. У человека глаза и осязательные рецепторы находятся на поверхности тела. А вкусовые и слуховые рецепторы, будучи внутри тела, соединены с внешней средой каналами: ротовой полостью или слуховым каналом. Мышечные рецепторы не контактируют со средой. Данные от всех рецепторов поступают в мозг, где обрабатываются с принятием решений на их основе. Очень похоже работает и система взведения. В блок автоматики, мозг ядерного заряда, стекаются данные от многих приборов и датчиков. Обрабатывая их, система взведения реализует алгоритмы повышения готовности заряда к взрыву. Так, чековые или концевые выключатели находятся на поверхности носителя ядерного заряда. Размыкаются контакты, выдергиваются чеки, и в блок автоматики поступает сигнал об отделении носителя от стартового сооружения, самолета-носителя, самоходной установки или подлодки. Другие приборы связаны со средой, в которой движется носитель, и измеряют ее параметры. Если это крылатая или баллистическая ракета, используются манометрические, барометрические или аэродинамические датчики. Первые выдают сигнал при достижении заданной разности наружного статического давления и давления в специальной емкости в приборе, сообщая о достижении заданного перепада высоты. Вторые реагируют на значение наружного статического воздушного давления. Третьи срабатывают при заданной разнице статического и полного давления, создаваемого напором встречного воздуха при заданной скорости носителя. Сигналы датчиков вызывают включения или отключения электрических цепей в блоке автоматики. Ядерная боевая часть крылатой противокорабельной ракеты. Вид со стороны блока автоматики. Но если ракета не достигла контрольной высоты или не развила контрольную скорость, то блок автоматики не отключит эту ступень предохранения.

После окончания школы в 1929 г. С выбором учебного заведения мне повезло. В тридцатые годы Политехнический институт переживал пору расцвета. Френкель, А. Иоффе и ряд других выдающихся ученых и педагогов отдавали много сил подготовке и отбору способной молодежи для научной работы. Неподалеку от главного корпуса учебного института находился первый в стране исследовательский физический институт — физтех. Студенты физико-механического факультета, на котором я учился, совмещали учебу с работой в физтехе. Студентом четвертого курса и я вошел в творческий коллектив этого института. Вскоре я познакомился со своим будущим руководителем, Игорем Васильевичем Курчатовым — человеком, оказавшим громадное влияние на весь мой жизненный путь, и не только в выборе направлений научных исследований. На меня произвели глубокое впечатление логичность его мышления, быстрота реакции, высокая организованность и, главное, стиль его научной работы. Курчатовский подход к проблеме и в молодые годы, и сегодня, спустя много лет, мне всегда представлялся совершенным. Курчатова отличали богатое воображение и фантазия, умение поставить простыми средствами изящный эксперимент, вскрывающий сердцевину проблемы. Он подходил к новому явлению с разных сторон, быстро очерчивал круг возможных вариантов трактовки экспериментальных данных, затем постепенно сужал этот круг. И, как правило, достигал верного объяснения. Игорь Васильевич всегда стремился быть на главном направлении науки и умел осуществлять свое стремление. Именно в это время, точнее с 1932 г. Курчатов начал заниматься ядерной физикой. Он решительно прерывает успешно протекавшие исследования сегнетоэлектричества. Им уже тогда был создан серьезный раздел науки. Можно было спокойно развивать успех, плодотворно трудиться над проблемой сегнетоэлектриков годы и годы. Но интуиция подсказала: сегодня магистральное направление — ядерные исследования. Были для такого заключения какие-то видимые причины? Тогда многие помнили слова Резерфорда о том, что внутриядерная энергия найдет практическое применение в XXI веке. Игорь Васильевич не сразу определил направление своих работ: некоторое время работал на ускорителях в Харькове, занимался реакциями на легких ядрах. В начале 1933 г. Ферми он понял значение нейтронной физики. Главным его увлечением стала физика медленных нейтронов. Примерно в 1936 г. Курчатовым и сыгравший в развитии советской науки выдающуюся роль. На нем анализировались и разрабатывались экспериментальные и теоретические идеи нейтронной физики. В нем активно участвовали сотрудники И. Курчатова по физтеху: Г. Щепкин, М. Еремеев, А. Вибе, А. Юзефович, И. Панасюк и я, из Радиевого института: М. Мещеряков, К. Петржак и И. Гуревич, теоретики Я. Хургин и А. Не часто, но бывали на семинарах Я. Френкель, Л.

Похожие новости:

Оцените статью
Добавить комментарий