Новости что такое додекаэдр

В пифагорейской школе известна идея, согласно которой додекаэдр образовывал «балки», на которых был возведен свод небес. Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями.

Додекаэдр - это...

За последние 200 лет в Европе было обнаружено более сотни таких предметов. Однако находка в Нортон-Дисней вызвала особый интерес учёных. Этот экземпляр додекаэдра сохранился целиком и выделяется среди своих собратьев крупными размерами - примерно с грейпфрут.

Подобно правильному додекаэдру , он имеет двенадцать одинаковых пятиугольных граней, по три пересекающихся в каждой из 20 вершин. Однако пятиугольники не правильные, и фигура не имеет осей симметрии пятого порядка. Хотя правильные додекаэдры не существуют в кристаллах, тетартоидная форма существует. Название тетартоид происходит от греческого корня, означающего одну четверть, потому что он имеет одну четверть полной октаэдрической симметрии и половину пиритоэдрической симметрии. Абстракции, разделяющие топологию и симметрию твердого тела, могут быть созданы из куба и тетраэдра. В кубе каждая грань разделена пополам наклонным краем.

В тетраэдре каждое ребро делится на три части, и каждая из новых вершин соединяется с центром грани. В обозначениях многогранников Конвея это гиротетраэдр. Ортографические проекции с 2-х и 3-х кратных осей Кубическая и тетраэдрическая форма Кобальтит Связь с додекаэдром дьякис Тетартоид можно создать, увеличив 12 из 24 граней додекаэдра дьякиса.

Однако противники этой теории отмечают, что использование додекаэдров в качестве измерительных приборов любого рода представляется невозможным из-за отсутствия у них какой-либо стандартизации. Ведь все найденные предметы имели разные размеры и конструкции. Впрочем, среди множества подобных теорий есть одна весьма правдоподобная. Согласно ей, эти предметы относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших территории Северной Европы и Британии. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными на их поверхности правильными многогранниками.

Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до нашей эры, находят в Шотландии, Ирландии и Северной Англии. Примерно к этому же времени относится возведение знаменитого мегалитического комплекса под названием Стоунхендж. Никто до сих пор не знает наверняка, каково было предназначение этого сооружения. Однако явно неслучайное расположение гигантских камней, привязанное к циклам движения солнца по небу, дает основания полагать, что Стоунхендж служил не только для религиозно-ритуальных обрядов наиболее вероятное назначение , но и для астрономических наблюдений. Возможно, что и маленькие каменные шары-многогранники играли для древних жителей Британии роль «домашних Стоунхенджей», олицетворяя какие-то важные для них духовные идеи и тайны мироустройства. То, что додекаэдры могли быть предметами именно этого назначения, подтверждает и роль правильных многогранников в картинах мироздания, созданных в Древней Греции школой пифагорейцев. Так, в платоновском диалоге «Тимей» четыре главных элемента материи - огонь, воздух, вода и земля - представлены в виде скоплений крошечных частиц в форме правильных многогранников: тетраэдра, октаэдра, икосаэдра и куба. Что же касается пятого правильного многогранника, додекаэдра, то его Платон упоминает как-то вскользь, отметив лишь, что эта форма использовалась «для образца» при создании Вселенной, имеющей совершенную форму сферы.

По мнению ученых, это явная отсылка к Пифагору, который пропагандировал идею, согласно которой додекаэдры образовывали «балки», на которых возведен свод небес.

Исследователи древнегреческой философии предполагают, что здесь Платон, вероятно, размышлял в духе более ранней традиции, уходящей к Пифагору. В пифагорейской школе известна идея, согласно которой додекаэдр образовывал «балки», на которых был возведен свод небес.

Также уместно отметить, что в более раннем диалоге «Федон» Платоном вложено в уста Сократа такое 12-гранное додекаэдрическое описание небесной, более совершенной земли, существующей над землей людей: «Рассказывают, что та Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи». Под очевидным влиянием идей Платона, в последующие века философы и ученые стали предполагать, что небеса сделаны из пятого элемента «эфира» или «квинтэссенции». Эту традицию можно увидеть в иллюстрациях к работе Иогана Кеплера Mysterium Cosmographicum, изданной в 1596 году, где космос изображен в форме додекаэдра.

Космос по Кеплеру Наступившая после Кеплера эпоха великих научных открытий постепенно принесла совершенно новые знания об окружающем мире, включая и молекулярное устройство материи. Что же касается наивных платоновых идей об особой роли правильных многогранников в мироустройстве, то в конце XIX века отношение к ним стало примерно такое же, как к древней мифологии — местами забавно, однако для физической науки совершенно бесполезно. А состоящий из пятиугольников 12-гранный додекаэдр при этом опять остался несколько в стороне — но, как и прежде, с некоторым смутным намеком на отношение к форме мироздания.

Сначала это произошло на рубеже XIX-XX веков, когда великий математик Анри Пуанкаре занялся исследованием возможных форм для вселенной, представляемой в виде замкнутого 3-мерного пространства. Опровергая одну из собственных гипотез, Пуанкаре сумел мысленно создать теоретически непротиворечивую конструкцию с чрезвычайно интересными топологическими свойствами — так называемую многосвязную сферу гомологий. А спустя еще четверть века, уже после смерти Пуанкаре, два других математика, Вебер и Зейферт, доказали, что абстрактную сферу гомологий Пуанкаре можно получить из вполне конкретного объекта — если «склеить» друг с другом противоположные грани додекаэдра.

Что такое додекаэдр?

Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр. Додекаэдр официально так и называют — «UGRO», то есть Unidentified Gallo-Roman Object — неопознанный галло-римский предмет. В этом уроке мы повторим, что такое октаэдр, додекаэдр и икосаэдр. Узнаем интересные факты о платоновых многогранниках. В словаре Ожегова и Шведовой додекаэдр определяется как многогранник, у которого каждая грань является правильным пятиугольником. правильный многогранник (платоново тело), имеющий двенадцать граней, которые являются правильными (равност. Около сотни подобных додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции.

Додекаэдр в природе и жизни человека

Тайна римских додекаэдров Рассмотрев вопрос о том, что такое додекаэдр, можно перейти к характеристике основных свойств правильной объемной фигуры, то есть образованной одинаковыми пятиугольниками.
Что такое додекаэдр? »Его определение и значение Обнаруженный додекаэдр представляет собой пустотелый многогранник из 12 пятиугольников.
«Римский додекаэдр» - древний мистический артефакт и его назначение Римский додекаэдр ставит археологов в тупик более 200 лет.
Додекаэдр » Боги Славян Тайна римского додекаэдра Римский додекаэдр, найденный в Бонне, Германия.

Ответ на вопрос — зачем в древности был нужен и как использовался «Римский додекаэдр».

Поставить отметку на границе верхнего левого сектора круга. Назвать точку буквой «А». По аналогии поставить отметку на верхней правой части круга. Назвать точку буквой «В». Найти верхушку фигуры. Это место пересечения вертикальной линии и границы окружности.

Назвать точку буквой «С». От центра круга отступить вниз 2,5 см. Провести горизонтальную черту 3 см длиной. Вертикальная черта внутри круга должна разделить новую линию пополам. То есть, с каждой стороны должно остаться по 1,5 см.

Концы новой горизонтальной линии назвать точками «Е» и «Д». Соединить точку «Е» с точкой «А». Соединить отметку «А» с вершиной фигуры «С». От точки «С» провести линию до точки «В». Соединить точку «В» с отметкой «Д».

В конце нужно проверить, равны ли стороны пятиугольника. Если эти показатели в порядке, то заготовку можно вырезать ножницами. Построение развертки, чертежи Додекаэдр развертка для склеивания строится в центре листа можно собрать из 2 чертежей. Как сделать 1 часть развертки, с помощью шаблона из картона: Расположить на бумаге шаблон вершиной вверх. Обвести заготовку по контуру.

Развернуть картонный шаблон боком. Соединить правую сторону фигуры с левой стороной уже начерченной формы. Обвести картонный шаблон по контуру. Переместить шаблон к верхней левой стороне центральной фигуры. Снова переместить шаблон, расположив его боковой стороной к правой верхней стороне центральной фигуры.

Совместить боковую сторону шаблона с правой стороной центрального пятиугольника. Обвести шаблон по контуру. Дорисовать последнюю грань по аналогии. Добавить припуски для склеивания. На верхних частях развертки эти припуски должны располагаться с левой стороны, а на нижних частях развертки — с правой стороны.

Края всех припусков на швы должны быть скошенными. Па аналогии нужно сделать ещё 1 развёртку на 2 листе бумаги. Развертка для склеивания Вырезать обе фигуры по контуру. Работа с готовой формой, склеивание Как собрать додекаэдр: Чтобы бумага легко складывалась, нужно продавить все линии сгиба, вокруг центральной фигуры. Для этой цели можно использовать ребро линейки или обратную сторону ножниц.

Подогнуть все припуски на склеивания внутрь. В собранном виде каждая развертка должна напоминать полусферу с гранями. Клей нужно наносить на припуски для склеивания, а затем аккуратно соединять их с гранями фигуры. Линии сгиба на «ушках» для склеивания должна совпасть с краем грани. Собрать 2 развёртки по отдельности.

Склеить половинки додекаэдра. Дождаться высыхания клея. Можно украсить готовый додекаэдр цветной бумагой или наклеить на грани фотографии, либо листы календаря. Большой додекаэдр из картона Додекаэдр развертка для склеивания может быть сделана по шаблону, так же как для создания фигуры из бумаги из картона может быть любого размера. Чертеж развертки также следует выполнить в 2 частях.

Какой картон подходит для работы: Цветной детский. Хороший вариант для создания додекаэдра с гранью, высота которой не будет превышать 5 см. Детский картон тонкий, поэтому сделать большую фигуру будет очень сложно. Придется вырезать все грани по отдельности и чертить на них дополнительные припуски для склеивания. Более плотный материал, который используют в печати.

Из этого следует, что и сам додекаэдр является правильным телом. У этого многогранника 12 граней, 30 ребер и 20 вершин, причем из каждой выходит по три ребра. Как и у икосаэдра, центром симметрии додекаэдра является его геометрический центр.

Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра. Связь со сферическим замощением.

А радиус описанной вокруг этих пяти вершин окружности образующих плоскость равен диаметру вписанной в любую из граней окружности. Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Правильный додекаэдр

Другие примеры многогранников Также иногда рассматриваются такие многогранники как октаэдр, додекаэдр. Ромбический додекаэдр можно рассматривать как предельный случай пиритоэдра, и он обладает октаэдрической симметрией. Додекаэдр официально так и называют — «UGRO», то есть Unidentified Gallo-Roman Object — неопознанный галло-римский предмет. Пятый же многогранник, додекаэдр, воплощал в себе «всё сущее», символизировал всё мироздание, почитался главнейшим. Рассмотрев вопрос о том, что такое додекаэдр, можно перейти к характеристике основных свойств правильной объемной фигуры, то есть образованной одинаковыми пятиугольниками.

Геометрия Додекаэдров

Что такое додекаэдр. это тело, состоящее из 12 граней выпуклой формы, 30 ребер, 20 вершин. правильный многогранник (платоново тело), имеющий двенадцать граней, которые являются правильными (равност. Утверждение под номером 1 неверно, так как название «додекаэдр» с греческого означает «двенадцать граней». Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр.

Что такое Додекаэдр простыми словами

Правильный додекаэдр | ИнтернетУрок Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.
Загадочный додекаэдр возрастом 1600 лет найден в Бельгии - Российская газета Многогранник с 12 гранями, он же додекаэдр В геометрии додекаэдр (греч.
Правильные многогранники Каждая вершина додекаэдра является вершиной трех правильных пятиугольников.
Гипотеза ИДСЗ (Икосаэдро-додекаэдрическая структура Земли). Многогранники. Точка зрения. Около сотни подобных додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции.

Загадочный 12-гранник: кто и зачем использовал додекаэдры во времена Древнего Рима?

Загадочный додекаэдр возрастом 1600 лет найден в Бельгии Обнаруженный додекаэдр представляет собой пустотелый многогранник из 12 пятиугольников.
Додекаэдр – знак космической мощи. Исаева О.В. | Дельфис Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников.
Додекаэдр – это... Определение, формулы, свойства и история Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь).
Значение слова додекаэдр: что это такое? Правильный додекаэдр имеет грани в виде правильных пятиугольников (см. пентагон-додекаэдр).

Правильные многогранники — подробнее

  • Додекаэдр - Dodecahedron -
  • Правильный додекаэдр — Что такое Правильный додекаэдр
  • Что такое додекаэдра объяснение свойства и примеры
  • Додекаграфы — атомные ядра
  • додекаэдр — Викисловарь

Типы додекаэдра

  • Правильный додекаэдр | ИнтернетУрок
  • Ответ на вопрос - зачем в древности был нужен и как использовался «Римский додекаэдр». • AB-NEWS
  • Додекаэдр. Развертка для склеивания, распечатки а4, шаблоны
  • Кругосветка по додекаэдру
  • Правильный многогранник | Наука | Fandom

Тайна римского додекаэдра

Большинство найденных додекаэдров более-менее идентичны по форме, но имеют разные размеры, в том числе отверстий. А для того, чтобы определять конкретное астрономическое время в разных точках Римской империи хотя бы , нужна все-таки унификация измерительных приборов. Скажем, современные теодолиты и нивелиры функционально одинаковы. И еще. Когда додекаэдров было уже откопано несколько десятков, археологи обнаружили кое-что похожее, но другое - икосаэдр, не двенадцати-, а двадцатигранник. И отверстий в нем не было совсем. Поэтому никакой угол не измеришь при всем желании. Додекаэдр и икосаэдр. Как говорится, найди семь отличий.

Существует также "культовая" версия предназначения додекаэдров. Кое-кто предполагает, что эти бронзовые предметы были элементом какого-либо религиозного ритуала.

В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра. Додекаэдр имеет три звёздчатые формы.

В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов.

Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет. Вместо замкнутого многогранника появится открытая геометрическая система пяти ортогональностей. Или симметричное пересечение пяти трехмерных пространств. Ближайшая параллельная к произвольно выбранной грани плоскость, образованная пятью вершинами, не принадлежащими выбанной грани, отстоит от этой грани на расстояние радиуса описанной вокруг данной грани окружности.

Значит, энергия пяти элементов помогает нам изменяться, совершенствоваться. Пять элементов в единстве образуют пентагон, или пятигранник, одну из составляющих додекаэдр Матери Мира. Платон, последователь Пифагора, считал додекаэдр самым правильным из многогранников, так как грани его — правильные пятиугольники — сотканы из золотых пропорций. По Пифагору, именно в пятиугольных формах [пятиконечная звезда, или пентакль, и пентагон] заложены золотые логарифмические пропорции или священная золотая спираль — основа сокровенных глубинных соответствий эволюции жизни в Космосе, символ движения, развития и развёртывания Вселенной. Известно, что пятиричность проявлена во всей живой природе Земли морские звёзды, цветы, пять пальцев руки, пять оконечностей тела и т. Золотая пропорция заложена в постройках давних времён: гробница фараона Менеса ок. С древних времён пентаграмма являлась знаком-оберегом, символом богини Иштар и загробного мира, власти на царских печатях , интеллектуального всемогущества у гностиков и т. С древних же времён известны цветные изображения пентаграммы, датируемые 3500 годом до н. Пятиконечные звёзды символизировали траекторию планеты Венера. В астрономии пентаграмма Венеры — это вид траектории, которую проходит Венера при наблюдении её с Земли. Во время своего 8-летнего цикла Венера 13 раз подходит близко к Земле, делает петлю и снова отходит, каждый раз уходя на три интервала, или 144 градуса, вперёд, как бы вырисовывая в пространстве один лепесток пятилепесткового цветка. За 8 лет она создаёт полный правильный пентакль с кольцами петлями на концах, причём каждый последующий «пятилепестковый цветок» смещён относительно предыдущего на несколько градусов, поэтому эту сложную пентаграмму Венеры называют «розой Венеры» рис. Роза Венеры Пифагор называл Венеру Sol alter лат. По эзотерической доктрине эта Планета является Главою нашей Земли и её духовным прообразом… Носителем Света нашей Земли как в философском, так и в мистическом смысле [ 13]. Рерих называет эту звезду «светлой обителью Матери Мира», и в течение жизни нашей планеты Матерь Мира постоянно создаёт в пространстве вокруг Земли светло сияющий высоковибрационный духовный покров для планеты [ 14]. В своих записях Е. Рерих приводит слова Владыки о «воздействии пространственных лучей Венеры в борьбе с излучениями Земли». Она отмечает, что почувствовала это воздействие «от солнечного сплетения вниз до кундалини и затем от кундалини обратно» 05. Воистину существует пятилепестковый священный Огненный Плат, сотканный Матерью Мира. Ткань космическая состоит из всех проявлений психической энергии и украшена Материей Люцидой» Б. Энергия разобщающая и энергия соединяющая одна и та же, но психодинамика связывает их материально» Б. Пифагорейцы, как и китайцы, учили, что мир состоит из пяти взаимосвязанных элементов, или стихий. Ученик Е. Блаватской, известный философ-мистик и астролог М. Холл, сообщает много интересного о пяти элементах. Эфир — самый разреженный из пяти элементов — возник первым, ибо образование мира, согласно древней космогонии, шло от края окружности к её центру. Из светящейся сферы эфира внутрь падали наиболее грубые частицы, чтобы образовать сферу воздуха. Воздух выделил из себя огненный принцип, в результате чего образовалась сфера огня. Из огня выделилась его противоположность — влажный принцип, и возникла вода. Более тяжёлые частицы, заключённые внутри элемента воды, опустились вниз, и из этого осадка появился самый «низменный» из элементов — сама земля. Пять элементов — это пять отрицательных полюсов пяти универсальных принципов. Элементы — носители сил, исходящих от звёзд и сохранённых планетами. Элементы — хранилища жизненности, и каждый элемент сообщает организмам, в которые он входит, некую нравственную или интеллектуальную силу. Земля как элемент наделяет стабильностью, стойкостью, фундаментальностью; вода — принципом жизненности, плодовитости, силой роста. Огонь связан с силой движения, эмоций, чувственного восприятия, комплексом души. Воздух — носитель интеллектуального импульса. Эфир — носитель интуитивной и экстрасенсорной энергии, силы вдохновения. Он усиливается в тех, кто развил в себе эти способности и возможности» [ 17]. В различных сочетаниях между собой пять элементов, или стихий, образуют минеральное, растительное, животное, человеческое царства, и пятый — сферу эфира, который пронизывает все остальные элементы и поддерживает в них существование. Все пять элементов есть пространственные Силы Матери Мира, мощное действие которых пятерично в каждом человеке. Эфир древние считали посредником между нашим миром и потусторонним миром. Великий Учитель уточняет сущность пятого элемента, называя его «отложениями психической энергии» 03. Поскольку известно, что эфир сгустится так, что будет виден в воздухе и будет главенствовать над другими элементам, становится понятно, почему так много внимания уделяется в Агни Йоге воспитанию психической энергии. Каждая мысль есть мыслеобраз, который кристален, прозрачен и сияющ, как Додекаэдр Матери Мира, или тёмен, мохнат и колюч в случае злых мыслей. Так мы сами готовим себе прекрасное или безобразное будущее. Ткань космическая состоит из всех проявлений психической энергии. Возвращаясь от составляющих чисел к фигуре додекаэдра, можно порадоваться, что эзотерические знания о строении Вселенной оказались идентичными результатам современных исследований крупномасштабного реликтового излучения Вселенной. Учёные пришли к выводу, что Вселенная имеет форму додекаэдра. Вселенная — прекрасный, невообразимых размеров кристалл, пронизанный Мощью Матери, и кристалл этот живой и любящий. Рерих сравнивает всю Вселенную с бесконечной паутиной, «в которую вплетают новые узоры многочисленные пауки, или сознания различных степеней» [ 19]. Строение Земли, по последним научным данным, представляет собой додекаэдр в икосаэдре. Снова об этом говорил ещё Платон: «Земля, если взглянуть на неё сверху, похожа на мяч, сшитый из 12 кусков кожи» [ 20]. Есть довольно интересная и старая тайна, над которой безуспешно ломают голову археологи во множестве стран Западной и Центральной Европы, когда при раскопках поселений времён Римской империи I—IVв. Их сейчас найдено около сотни. В центре каждого пятиугольника имеется круглое отверстие, вокруг которого нанесены концентрические круги, каждая из 20 вершин увенчана набалдашником в виде шарика. Назначение этих предметов до сих пор неизвестно. У них есть каменные аналоги, которые датируются 3000—1500 гг.

Геометрия. 10 класс

Эти штучки размером 4-11 сантиметров имеют 12 плоских граней, каждая из которых представляет собой правильный пятиугольник. Внутри изделий — пустота, а на вершинах пятиугольников часто встречаются маленькие шарики. В гранях додекаэдра проделаны круглые окошки-отверстия. Штуковины изготовлены из разных материалов: есть каменные, бронзовые, медные, и все они обнаружены в бывших землях северо-западной части Римской империи. Всего же найдено более сотни таких изделий. Удивительно в этой находке то, что нет ни одного документа, где были бы зафиксированы сведения о предназначении додекаэдров. Такая вот головоломка из прошлого для историков, которая до сих пор не разгадана.

Хотя с момента первой находки прошло уже 280 лет. Первый додекаэдр был найден в 1739 году на одном из английских полей вместе с древними монетами.

При этом он сохранился целиком, хотя многие другие были найдены расколотыми или сильно поврежденными. Также он достаточно большого размера по сравнению с ранее обнаруженными. Источник: Norton Disney History and Archaeology Group Зачем додекаэдры понадобились жителям античной Европы В римской литературе до сих пор не найдено описаний додекаэдров, поэтому остается неясным их назначение.

Среди многочисленных гипотез ученых — использование этих предметов в качестве инструментов, частей оружия, календарей, измерительных приборов, детских игрушек, игральных костей , выкроек для вязания перчаток, подсвечников, дальномеров, а также применение в математике, сельском хозяйстве, астрономии, религиозных обрядах. И это не полный список версий. Команда археологов-любителей отмечает, что эти артефакты не имеют одного стандартного размера, поэтому вряд ли могли бы служить для измерений. Также на них нет следов износа, какие должны быть на инструментах. Они слишком сложны в изготовлении: на создание этого конкретного додекаэдра явно ушло огромное количество времени, сил и навыков, говорят добровольцы.

Вряд ли такую ценную вещь стали бы использовать для повседневных нужд, например, вязания или игры.

По этой причине каждая вершина правильного многогранника может быть вершиной либо трех, либо четырех, либо пяти равносторонних треугольников, либо трех квадратов, либо трех правильных пятиугольников. Симметрия в пространстве Одно из интересных свойств правильных многогранников — это элементы симметрии. Прежде чем мы их выделим давайте определим симметрию в пространстве. Вам уже знакома симметрия из курса планиметрии. Там мы рассматривали фигуры симметричные относительно прямой и точки. В стереометрии же рассматривают симметрию относительно точки, прямой и плоскости. Будем говорить, что точки А и А1 симметричны относительно точки О рис. В таком случае О будет являться центром симметрии и будет симметрична сама себе.

Рисунок 6 — Центральная симметрия Точки А и А1 называются симметричными относительно прямой а, если прямая а проходит через середину отрезка АА1 и перпендикулярна к этом отрезку рис. Прямая а называется осью симметрии, а каждая ее точка считается симметричной самой себе. Если фигура имеет центр ось, плоскость симметрии, то говорят, что она обладает центральной осевой, зеркальной симметрией. Рисунок 8 — Зеркальная симметрия Рисунок 9 — Элементы симметрии куба Примером фигуры, обладающей и центральной, и осевой и зеркальной симметрией является куб рис. Фигура может иметь один или несколько центров осей, плоскостей симметрии. Так, например, у куба один центр симметрии и несколько осей и плоскостей симметрии. В геометрии центр, ось и плоскость симметрии многогранника называют элементами симметрии многогранников. С симметрией мы часто можем встретиться в природе, архитектуре, быту. Например, многие кристаллы имеют центр ось или плоскость симметрии.

Таким образом, растущий геокристалл создаёт энергетический каркас Земли. Надо отметить, что элементы симметрии, подобные кристаллу, нами обнаружены также у Марса, Венеры, Луны и Солнца. Мы предположили, что энергетические каркасы присущи всем объектам космоса. Аналогичные взгляды относительно энергетических каркасов Вселенной высказывает и развивает советский учёный В. Эти предположения, на наш взгляд, подтверждаются новейшими находками и открытиями двух последних лет.

Таким образом, очень может быть, что вся Вселенная пронизана энергетическими полями разных порядков. Каждый элемент Вселенной - энергетический узел разного уровня, а линии, соединяющие их, - энергетические "каналы" различной мощности, объединяющие всё многообразие жизни во Вселенной в единую систему. Планета Земля, являясь каркасным "узелком" Вселенной, в то же время сама обладает энергетическим каркасом с иерархией подсистем нескольких порядков. Так вот икосаэдро-додекаэдрическая структура Земли… в ней додекаэдр «играет роль Матери», а икосаэдр — «роль Отца»… «Наличие шаров на вершинах обеспечивает значительный радиус действия и высокую интенсивность излучения. Юла имеет прозрачные: дно, крышку и заполнена жидкостью, в которой находится большое количество частиц типа чаинок.

Юлу закручивают, а затем тормозят… Об этом эффекте ученые предпочитают умалчивать… Но если присмотреться к снимку галактики М 51 NGG 5194 из ежегодника «Наука и человечество» за 1980 г. Изломов на виток спирали приходится пять если первый и последний считать за один.

Похожие новости:

Оцените статью
Добавить комментарий