Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии.
Наука в фильме "Интерстеллар": кротовые норы, черные дыры, пространство-время
Черная дыра и время Дальше можно обсуждать то, что происходит, когда героям удалось преодолеть большое расстояние и подобраться к черной дыре. Здесь уже затрагивается искривление времени. Думать о времени как о чем-то простом и равномерном является такой же ошибкой, как думать, что Земля плоская. Развитие науки позволило разрушить наше представление о времени.
Когда главные герои попали на планету Миллер, то получили сведения о том, что час, проведенный там, равен семи годам на Земле. Это связано с тем, что планета вращается вокруг черной дыры на близком расстоянии от нее. В фильме подробно объясняется влияние гравитации на время.
Гаргантюа — черная дыра огромной массы, а объекты с большой массой способны создать сильную гравитацию. Гравитация искривляет пространство и время. Чем сильнее гравитационное поле, тем больше будет изменяться пространство и время, а значит, время будет идти медленнее.
Искривление времени также является правдой. В реальном мире время идет быстрее в горах, хоть разница и небольшая. При этом замедляться будут не только часы, но и все процессы, включая старение человека.
Почему в фильме показана именно водная планета?
На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений желтые кривые на рис. В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами.
На рис. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки. Лучи света, формирующие изображения звезд, на которые указывают синие стрелки Модель Double Negative, та же, что на рис.
Система состоит из массивной звезды, которая примерно в 100 раз больше нашего Солнца, и меньшей звезды-компаньона, которая примерно в 10 раз больше нашего Солнца. И это еще не все — вокруг массивной звезды вращаются еще две планеты-гиганты. Другая планета примерно в 10 раз больше Юпитера.
Обе эти планеты вращаются очень далеко от своей родительской звезды, поэтому они могут существовать, не поглощаясь интенсивным теплом и излучением звезды. Но что делает Гаргантюа действительно замечательным, так это расстояние между двумя звездами.
Она почти в три раза ближе, чем предыдущий рекордсмен. Gaia BH2 находится примерно в 3 800 световых годах от Земли, в созвездии Центавра. Оба объекта примерно в 9-10 раз массивнее Солнца и находятся в галактике Млечный Путь.
Когда какой-то объект или облако межзвездного газа падает на черную дыру, появляется всплеск электромагнитного излучения. Астрономы фиксируют его и делают вывод о присутствии черной дыры. Обе дыры оказались «спящими» или неактивными.
Черные дыры. Kак умирают чёрные дыры?
Мы думали, что знаем, представляли их в художественном виде, создавали симуляции и даже использовали их в кино, формируя у самих себя образ того, как должен выглядеть этот космический объект. После просмотра "Интерстеллара", пожалуй, у всех сложились определенные представления о черных дырах. Однако группа ученых, входящих в проект "Телескоп Горизонта Событий" представила изображение гиганта , масса которого в 6. Эта черная дыра вовсе не похожа на Гаргантюа — аналог из фильма Нолана с МакКонахи в главной роли.
Для начала небольшое введение для тех, кто имеет смутные представления об этих странных космических телах. Черные дыры — это объекты, предсказанные общей теорией относительности Эйнштейна. Они имеют столь огромную массу, что ни свет, ни материя не способны вырваться за пределы гравитационного влияния.
А граница, за которую уже ничто не способно выбраться, называется горизонт событий. Вчера ученые продемонстрировали изображение этого феномена — не фотографию, а реконструированное изображение "тени", которую черная дыра отбрасывает на свет, находящийся по другую сторону.
Как и во многих других фильмах Кристофера Нолана, в данной картине представлен ряд непростых для понимания моментов, которые могут сбить с толку некоторых зрителей.
В фильме «Интерстеллар» задействованы различные научно-фантастические концепции, многие из которых связаны с временем и теорией относительности. В итоге, финал картины остается непосильным для многих зрителей. Как известно, в фильме «Интерстеллар» люди обнаруживают кротовую нору рядом с Сатурном, позволяющую кратчайшим путем отправиться в далекий регион космоса.
Благодаря этой норе агентство NASA отправляет 12 астронавтов на исследование 12 миров, потенциально пригодных для жизни. Трое астронавтов отправляют свои сигналы назад на Землю, а потому ученые NASA разрабатывают два плана — «А» и «Б», чтобы спасти все человечество. Первый план заключается в разработке теории гравитационного движения для продвижения человеческих колоний в космосе, тогда как второй план просто подразумевает отправку человеческих эмбрионов для колонизации одной из пригодных для жизни планет.
В итоге, главный герой Купер Мэттью Макконахи отправляет на корабле «Эндюрэнс» вместе с остальными членами экипажа на изучение трех сигналов.
Мы с моим коллегой Лиором Бурко исследуем физику черных дыр уже более двух десятилетий. В 2016 году моя аспирантка Кэролайн Мэллари, вдохновленная блокбастером Кристофера Нолана "Интерстеллар", решила проверить, сможет ли Купер герой Мэтью Макконахи выжить после падения в глубины Гаргантюа - вымышленной сверхмассивной, быстро вращающейся черной дыры, масса которой в 100 миллионов раз больше массы нашего Солнца. Фильм "Интерстеллар" был основан на книге лауреата Нобелевской премии астрофизика Кипа Торна, и физические свойства Гаргантюа занимают центральное место в сюжете этого голливудского фильма. Даже не трясет? Она обнаружила, что при всех условиях объект, падающий во вращающуюся черную дыру, не будет испытывать бесконечно больших эффектов при прохождении через так называемую сингулярность внутреннего горизонта дыры. Это сингулярность, которую объект, входящий во вращающуюся черную дыру, не может обойти или избежать. Мало того, при правильных обстоятельствах эти эффекты могут быть пренебрежимо малы, что позволяет пройти через сингулярность довольно комфортно. На самом деле, падающий объект может вообще не испытывать никаких заметных воздействий. Это повышает целесообразность использования больших вращающихся черных дыр в качестве порталов для гиперпространственных путешествий.
Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна. По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов. При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину. Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом.
По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря. Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни.
Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях. К счастью, он обладает природным оптимизмом и большими знаниями. Новоявленный Робинзон рассчитывает выжить и дождаться прибытия следующей экспедиции. Научно-фантастическая драма с элементами комедии «Марсианин» была поставлена по одноименному произведению Энди Вейера, программиста по образованию, который увлекается изучением физики, орбитальной механики и космонавтики.
Его роман отличается дотошным описанием всех ухищрений, к которым пришлось прибегнуть герою для выживания в экстремальных условиях. Соответственно, когда режиссер Ридли Скотт взялся за экранизацию, к съемочному процессу было привлечено много консультантов, в том числе из NASA. Фильм задумывался как гимн науке и блестяще выполнил эту миссию, даже несмотря на то что после премьеры собрал богатый урожай научной критики. Правда Чтобы обеспечить себя хотя бы скудным, но пропитанием, Марк решает посадить в марсианском грунте картофель, использовав в качестве удобрения человеческие экскременты. В 2015 году этот момент вызвал много критики, считалось, что грунт красной планеты слишком токсичен для растения.
Но уже через два года исследователи из Международного центра картофеля в Перу сообщили об успешных экспериментах по выращиванию клубней в условиях, приближенных к марсианским. Селекционеры брали грунт из пустыни Пампа де ла Хойя, отличающийся повышенным содержанием солей. Гравитационный маневр, который предпринимают коллеги Марка Уотни, чтобы развернуться в сторону Марса и разогнаться, не придуман специально для этой истории. Он применяется в космонавтике уже давно, в том числе и во время злополучной миссии «Аполлон-13», когда терпящая бедствие ракета разворачивалась для полета к Земле, используя гравитацию Луны. Одним из предметов, которые спасают жизнь главному герою фильма, оказывается обыкновенный скотч.
По словам астронома Владимира Сурдина, скотч является обязательной частью снаряжения космонавтов, так повелось со времен экспедиции на Луну, когда американские астронавты смогли починить сломавшееся крыло лунохода скотчем. Кстати, рулон оказался на борту совершенно случайно и не был предусмотрен протоколом. Мифы На Марсе действительно бывают пылевые бури, и очень масштабные, так что вся обозримая поверхность планеты затягивается сплошной пеленой. Но их сила очень мала из-за разреженной атмосферы , так что марсианская буря не может причинить сколько-нибудь серьезных разрушений постройкам. Автор романа Энди Вейер отдавал себе отчет в слабости этого эпизода, но прибег к помощи вымышленного урагана, чтобы запустить сюжет «Марсианина».
Герой фильма выживает на Марсе на протяжении полутора лет, причем не где-то в пещерах, а в легком модуле на поверхности. Увы, это практически невозможно, потому что всё та же разреженная атмосфера планеты очень плохо защищает от радиации — главной проблемы всех космических путешествий. По мнению космобиолога Майкла Мамма, человек не сможет продержаться на Марсе так долго и не заболеть.
Сверхмассивная чёрная дыра "Гаргантюа"
Обои 3840x2160 черная дыра, Гаргантюа, темный. Скачать. Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. Forwarded from ДПС контроль Благовещенск (@dpskontrol_28rus) Сканер портамур амурлайф новости ДТП аварии autoroadblg народный. В Белогорске автомобиль засосало в Гаргантюа (черную дыру). Невероятное приключение автомобиля на ул. Гастелло. Термин «черная дыра» появился только в 1969 году с легкой руки физика Джона Уилера.
Видео обои Сверхмассивная чёрная дыра
8 апреля 2022 в 13:54. $ASTR-US. это настоящая черная дыра, сверхмассивная чёрная дыра Гаргантюа. Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". На рисунке 8.1 показана быстро вращающаяся черная дыра (назовем ее Гаргантюа) на фоне звездного поля, какой она предстала бы перед вами, находись вы в экваториальной плоскости Гаргантюа.
Почему черная дыра называется Гаргантюа
Очень далеко! Проект Event Horizon Telescope «Телескоп горизонта событий» , в рамках которого и получился итоговый снимок, был запущен в 2012 году для наблюдения за чёрными дырами. Всё это время учёные собирали необходимую информацию, а последние два года суперкомпьютер работал над получением того самого изображения. Зато для появления мемов и шуток по поводу нового фото потребовались считанные часы.
My face when I saw the black hole pic. Одним из самых популярных вариантов стало сравнение чёрной дыры с пончиком: I am sure the spatial resolution of the blackhole images will get better in future.
Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений желтые кривые на рис.
В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами. На рис.
Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки. Лучи света, формирующие изображения звезд, на которые указывают синие стрелки Модель Double Negative, та же, что на рис.
Последовательно изучая эти рисунки, можно многое понять о гравитационном линзировании. Имейте в виду: действительное направление к звезде — вверх и вправо внешние концы красных лучей.
Почему горит? Потому что там идет химическая реакция и частички, которые там вылетают, они горячие.
Чем горячее, тем белее свет. То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов. Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры.
Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света. Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной.
До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют. Сегодня произошло выдающееся событие. Впервые человечеству была предъявлена фотография реального изображения черной дыры. Физики ждали этого 100 лет.
Эти объекты были предсказаны в теории Эйнштейна более 100 лет назад Вячеслав Докучаев. Докучаев уверен, что результат, полученный учеными, тянет на Нобелевскую премию, но ему обидно, что в таком значимом мероприятии не участвовала Россия. В том числе потому, что в стране нет ни одного мощного радиотелескопа.
Согласно квантовой механике, а точнее, ее обобщению - квантовой теории поля, может происходить спонтанное рождение частиц из вакуума. При отсутствии внешних полей пара частица-античастица, рожденная таким образом, аннигилирует обратно в вакуумное состояние. Однако если поблизости есть черная дыра, ее поле притянет ближайшую частицу. Тогда, по закону сохранения энергии-импульса, другая частица уйдет на бoльшее расстояние от черной дыры, унося с собой "приданое" - часть энергии-массы коллапсара иногда говорят, что "черная дыра потратила часть энергии на рождение пары", что не совсем корректно, ибо выживает не вся пара, а только одна частица. Как бы то ни было, в результате удаленный наблюдатель обнаружит поток всевозможных частиц, излучаемых черной дырой, которая будет расходовать свою массу на рождение пар, пока полностью не испарится, превратившись в облако излучения 2. Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы в четырехмерном пространстве-времени.
Черные дыры и сингулярности В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Увы, если бы фантасты знали о современной физике чуть больше, они бы не были столь несправедливы к черным дырам. Дело в том, что коллапсары фактически защищают Вселенную от гораздо более грозных монстров... Сингулярностью называется точка пространства, в которой его кривизна неограниченно стремится к бесконечности, - пространство-время как бы рвется в этой точке. Современная теория говорит о существовании сингулярностей как о неизбежном факте 3 - с математической точки зрения, решения уравнений, описывающие сингулярности, также равноправны, как и все прочие решения, описывающие более привычные объекты Вселенной, которые мы наблюдаем. Есть тут, однако, очень серьезная проблема. Дело в том, что для описания физических явлений необходимо не только иметь соответствующие уравнения, но нужно также задать граничные и начальные условия. Так вот, в сингулярных точках эти самые условия задать нельзя в принципе , что делает предсказательное описание последующей динамики невозможным. А теперь представим, что на раннем этапе существования Вселенной когда она была достаточно малой и плотной образуется множество сингулярностей.
Тогда в областях, которые находятся внутри световых конусов этих сингулярностей иными словами, причинно-зависимых от них никакое детерминистское описание невозможно. Мы имеем абсолютный и бесструктурный хаос, без намека на какую-либо причинность. Далее, эти области хаоса расширяются со временем по мере эволюции Вселенной. В результате к настоящему времени подавляющая часть Вселенной была бы совершенно стохастичной случайной и ни о каких "законах природы" не могло бы быть и речи. Не говоря уже о блондинках, планетах и прочих неоднородностях вроде нас с вами. К счастью, ситуацию спасают наши ненасытные обжоры. Математическая структура уравнений фундаментальной теории и их решений указывает на то, что в реальных ситуациях пространственные сингулярности должны появляться не сами по себе, а исключительно внутри черных дыр. Как тут не вспомнить мифологических титанов, пытавшихся воцарить Хаос на Земле, но низвергнутых Зевсом и Ко в Тартар и благополучно заключенных там навеки… Таким образом, черные дыры отделяют сингулярности от остальной Вселенной и не позволяют им влиять на ее причинно-следственные связи. Этот принцип запрета существования "голых" англ.
Пенроузом в 1969 году, получил название гипотезы космической цензуры. Как это часто бывает с фундаментальными принципами, полностью он не доказан, но принципиальных нарушений пока замечено не было - Космический цензор на пенсию пока не собирается. Стало быть, фундаментальная квантовая теория с учетом ОТО также принадлежит к этому типу? Так какая же из формул верна: 4 , базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или 5 , основанная на экстраполяции обычной квантовой теории поля до планковских масштабов? В настоящее время имеются весьма сильные аргументы в пользу того, что "мертва" скорее формула 5 , чем 4. Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной "по объему", а некая теория, "живущая" на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, ибо теория "на поверхности" - это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы. Первое дает рецепт вычисления статистической энтропии 4 для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела да простит меня неискушенный читатель за эту фразу.
Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно? Например, в случае распределения шара по ящикам см. Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная помните лоренцево сокращение длин? Ну а понятие "ящика", сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом. Пусть N - светоподобная гиперповерхность обобщенный световой конус некоторой совокупности пространственных точек S. Грубо говоря, N - это множество фотографий S, сделанных через бесконечно малые промежутки времени. Возьмем два пространственных среза N, сделанных в различные моменты времени две "фотографии" , назовем их S1 и S2.
Тогда принцип ковариантного ограничения на энтропию вещества, находящегося в S, гласит, что поток энтропии через гиперповерхность N между срезами S1 и S2 меньше модуля разности их площадей, деленного на четыре с точностью до размерного коэффициента, равного 1 в планковской системе единиц , или равен ему. Легко видеть, что по сути это та же формула 4 , только сформулированная более корректно с точки зрения геометрии. Второе - так называемое соответствие между пространством анти-де Ситтера adS и Конформной теорией поля CFT - это реализация голографии для некоего частного случая пространств постоянной отрицательной кривизны, тесно связанная с теорией струн. Соответствие гласит, что Конформная теория поля, определенная на границе пространства-времени анти-де Ситтера то есть на пространстве с размерностью на единицу меньше размерности самого adS , эквивалентна квантовой гравитации внутри самого анти-де Ситтера.
Найден новый тип черной дыры, скрывающейся на «космическом заднем дворе» Земли
Звёздной считают массу от трех до ста солнечных масс. Сверхмассивными называют чёрные дыры, имеющие от сотен тысяч до нескольких миллиардов масс Солнца. Они находятся обычно в центре галактик. Вторая космическая скорость или скорость убегания — это тот минимум, который необходимо достичь для преодоления гравитационного притяжения и выхода за пределы орбиты данного небесного тела. Для Земли скорость убегания равна одиннадцати километрам в секунду, а для чёрной дыры - это более трёхсот тысяч, вот насколько сильна её гравитация!
Границу чёрной дыры называют горизонтом событий. Объект, попавший внутрь него, уже не может покинуть эту область. Размер горизонта событий пропорционален массе чёрной дыры. Чтобы показать, насколько огромна плотность чёрных дыр, учёные приводят следующие цифры — чёрная дыра с массой, в 10 раз превосходящей солнечную, имела бы, примерно, 60 км в диаметре, а чёрная дыра с массой нашей Земли — всего лишь 2 см.
Но это только теоретические расчеты, поскольку чёрных дыр, не достигших трёх солнечных масс, учёными ещё не выявлено. Всё, что входит в область горизонта событий, двигается по направлению к сингулярности. Сингулярность, если сказать упрощенно, - это место, где плотность стремится к бесконечности. Через гравитационную сингулярность нельзя провести входящую в неё геодезическую линию.
Для чёрной дыры характерно искривление структуры пространства и времени. Прямая линия, которая в физике представляет собой путь движения света в вакууме, вблизи чёрной дыры становится кривой. Какие физические законы работают рядом с точкой сингулярности и непосредственно в ней, пока неизвестно. Некоторые исследователи, например, говорят о наличии так называемых червоточин, или пространственно-временных туннелей, в чёрных дырах.
Но не все учёные согласны признать существование подобных туннелей-червоточин. Тема космических путешествий, пространственно-временных туннелей служит источником вдохновения для писателей-фантастов, сценаристов и режиссеров. В 2014 году состоялась премьера фильма «Интерстеллар». Над его созданием работала целая группа учёных.
Их руководителем стал известный учёный, специалист в области теории гравитации, астрофизики — Кип Стивен Торн. Этот фильм считают одним из самых научных среди фантастических кинокартин и, соответственно, предъявляют к нему высокие требования. Велись многочисленные споры о том, насколько различные моменты фильма соответствуют научным фактам. Была даже издана книга «Наука Интерстеллара», в которой профессор Стивен Торн объясняет с научной точки зрения различные эпизоды из фильма.
Он говорил о том, что многое в киноленте основано как на научных фактах, так и на научных предположениях. Однако есть и просто художественный вымысел. Например, чёрная дыра Гаргантюа представлена в виде светящегося диска, который огибает свет. Это не расходится с научными знаниями, так как видна не сама чёрная дыра, а только аккреционный диск, а свет не может двигаться по прямой из-за мощной гравитации и искривления пространства.
В чёрной дыре Гаргантюа есть кротовая нора, представляющая собой червоточину или туннель, проходящий сквозь пространство и время. Наличие подобных туннелей в чёрных дырах - всего лишь научное предположение, с которым не согласны многие учёные. К художественному вымыслу относится возможность совершить путешествие по такому туннелю и вернуться назад. Чёрная дыра Гаргантюа — это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам.
Поэтому для особо яростных критиков хочется напомнить — фильм, всё же, научно-фантастический, а не научно-популярный. Он показывает красоту и величие мира, который нас окружает, напоминает о том, как много ещё нерешенных задач у. А требовать от фантастического фильма точного отражения научно доказанных фактов - несколько неправомерно и наивно. Совсем недавно науке стало достоверно известно, что же такое черная дыра.
Но едва ученые разобрались с этим феноменом Вселенной, на них свалился новый, куда более сложный и запутанный: сверхмассивная черная дыра, которую и черной-то не назовешь, а скорее ослепительно белой. А потому, что именно такое определение дали центру каждой галактики, который светится и сияет. Но стоит туда попасть, и кроме черноты, ничего не остается. Что же это за головоломка такая?
Памятка о черных дырах Доподлинно известно, что простая черная дыра - это некогда светившая звезда. На определенном этапе существования ее стали непомерно увеличиваться, при этом радиус оставался прежним. Если раньше звезду "распирало", и она росла, то теперь силы, сосредоточенные в ее ядре, начали притягивать к себе все остальные составляющие. Ее края "заваливаются" на центр, образуя невероятной силы коллапс, который и становится черной дырой.
Такие «бывшие звезды» уже не светят, а являются абсолютно внешне незаметными объектами Вселенной. Но они весьма ощутимы, так как поглощают буквально все, что попадает в их гравитационный радиус. Неизвестно, что кроется за таким горизонтом событий. Исходя из фактов, любое тело столь огромная гравитация буквально раздавит.
Однако в последнее время не только фантасты, но и ученые придерживаются мысли о том, что это могут быть своеобразные космические тоннели для путешествий на большие расстояния. Что же такое квазар Подобными свойствами обладает сверхмассивная черная дыра, иными словами, ядро галактики, у которого есть сверхмощное гравитационное поле, существующее за счет своей массы миллионы или миллиарды масс Солнца. Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока.
Вторая версия - это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру. Наша галактика Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении. Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно.
Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом. На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом. Параметры квазара Млечного Пути Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу.
Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус.
Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей.
Аналогично по мере движения камеры по орбите вокруг дыры все первичные изображения звезд рядом с Гаргантюа циркулируют вокруг первичных изображений полярных звезд, но пути их движения например, две замкнутые красные кривые сильно искажены пространственным вихрем и гравитационным линзированием. Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд например, вдоль двух желтых кривых. Почему в случае невращающейся черной дыры рис. На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений желтые кривые на рис. В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной — звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные — между внутренним и внешним кольцами. На рис.
Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка.
Черная дыра Интерстеллар 54. Гаргантюа черная дыра Интерстеллар Фото: 3д модель черной дыры 56. Излучение черной дыры В этой подборке вы найдете 65 красивых и очаровательных картинок с на тему Гаргантюа черная дыра обои.
Но ведь можно представить, что Москва образно похожа на черную дыру, куда всех затягивает. А Кремль спрятался во мраке за горизонтом событий. В свежей схеме появились два новых маршрута в Митино н12 и Бирюлёво н13.
Гаргантюа: самая большая Солнечная система во Вселенной
Фото: Ton 618 черная дыра. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”. Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века! 1) Почему черная дыра Гаргантюа в фильме выглядит именно так?
Видео обои Сверхмассивная чёрная дыра
Остальные источники предположительно являлись компактными облаками H II и планетарными туманностями, в некоторых из которых присутствовали звёздные компоненты [27]. Последующее десятилетие характеризовалось постепенным ростом разрешающей способности оптических приборов и выявлением всё более подробной структуры инфракрасных источников. К 1985 году стало ясно, что наиболее вероятным местом нахождения центральной чёрной дыры является источник, обозначенный как IRS 16. Были обнаружены также два мощных потока ионизированного газа, один из которых вращался по круговой орбите на расстоянии 1,7 пк от центра Галактики, а второй — по параболической на расстоянии 0,5 пк. Камера диапазона 1—2,5 мкм обеспечивала разрешение 50 угловых мкс [ источник не указан 2053 дня ] на 1 пиксель матрицы. Кроме того, был установлен 3D-спектрометр на 2,2-метровом телескопе той же обсерватории. С появлением инфракрасных детекторов высокого разрешения стало возможным наблюдать в центральных областях галактики отдельные звёзды. Изучение их спектральных характеристик показало, что большинство из них относятся к молодым звёздам возрастом несколько миллионов лет. Вопреки ранее принятым взглядам, было установлено, что в окрестностях сверхмассивной чёрной дыры активно идёт процесс звездообразования. Полагают, что источником газа для этого процесса являются два плоских аккреционных газовых кольца, обнаруженных в центре Галактики в 1980-х годах.
Однако внутренний диаметр этих колец слишком велик, чтобы объяснить процесс звездообразования в непосредственной близости от чёрной дыры. Звёзды, находящиеся в радиусе 1" от чёрной дыры так называемые «S-звёзды» имеют случайное направление орбитальных моментов, что противоречит аккреционному сценарию их возникновения. Предполагается, что это горячие ядра красных гигантов, которые образовались в отдалённых районах Галактики, а затем мигрировали в центральную зону, где их внешние оболочки были сорваны приливными силами чёрной дыры [30]. По состоянию на октябрь 2009 года разрешающая способность инфракрасных детекторов достигла 0,0003" что на расстоянии 8 кпк соответствует 2,5 а. Число звёзд в пределах 1 пк от центра Галактики, для которых измерены параметры движения, превысило 6000 [31]. Рассчитаны точные орбиты для ближайших к центру Галактики 28 звёзд, наиболее интересной среди которых является звезда S2. За время наблюдений 1992—2021 , она сделала почти два полных оборота вокруг чёрной дыры, что позволило с большой точностью оценить параметры её орбиты.
Пристегивайтесь, будет интересно! Сколько же лететь до ближайшей звезды? В разговоре с профессором в начале фильма Купер упоминает, что до ближайшей звезды лететь больше 1000 лет, и это не имеет смысла. Одна из ближайших звездных систем к Земле — Альфа Центавра, она находится на расстоянии почти 40 триллионов километров. На самом деле у NASA разрабатывается проект, который заключается в отправке туда микрозондов которые весят менее грамма, и разгонять их будут лазерным лучом. А если брать скорость зонда Helios, быстрейшего космического аппарата на данный момент, то на это потребуется 18 тысяч лет. Что с кротовой норой, Купер? Поначалу главный герой демонстрирует весьма глубокие знания в вопросе кротовых нор, но дальше по сюжету фильма эти знания почему-то исчезают. Он верно подмечает, что они не образуются сами собой, большинство физиков действительно считают, что такие сложные и необычные объекты не могут возникнуть во Вселенной естественным путем, как, например звезды и галактики. Кадр из фильма. Источник: kinopoisk. Но мы в 2023-м до сих пор не наблюдаем ничего похожего возле Сатурна.
В прошлом, как предполагают ученые, W2246-0526 могла захватить и уничтожить и многие другие соседние галактики. Подобная форма «каннибализма», как считают Эйзенхардт и его коллеги, была характерна и для других «хот-догов». Это может объяснять, почему ученые часто находят в ранней Вселенной необычно яркие галактики с невозможно крупными черными дырами, и почему сами хот-доги скрываются от внешнего мира под толстым коконом из пыли и газа, состоящим, по всей видимости, из останков их прошлых трапез. А что думаете Вы?! Email адрес не будет опубликован. Сохранить Имя и почту, что бы не вводить их снова.
Выдуманная черная дыра Гаргантюа из фильма «Интерстеллар» Даже прическу не помнет? Компьютерная модель показала, что при любых условиях объект падающий во вращающуюся черную дыру не будет испытывать бесконечно больших эффектов деформации при прохождении сквозь так называемый внутренний горизонт сингулярности — область черной дыры, избежать которой не удастся в любом случае. Более того, при определенных обстоятельствах воздействие этих эффектов будет настолько мало, что объект сможет без проблем пройти сквозь эту сингулярность, а в некоторых случаях и вовсе не заметить никакого воздействия со стороны. Маллари также обнаружила особенность, которая в полной мере не привлекала к себе внимания раньше: эффекты сингулярности в контексте вращающейся черной дыры приведут к стремительному увеличению циклов растягивания и сжатия объекта, падающего в ее центр. Однако исследовательница в своей работе отмечает, что в случае очень больших черных дыр, размером с ту же Гаргантюа, сила этих эффектов будет очень незначительной. Настолько незначительной, что ни сам космический аппарат, не живые существа, находящиеся на его борту, вероятнее всего, их даже не заметят. На этом графике показана физическая нагрузка на стальную раму космического аппарата с его приближением к центру вращающейся черной дыры. В маленькой вставке показана детализированная картина нагрузки, которая будет отмечаться при максимальном сближении аппарата. Важно отметить, что нагрузка сильно возрастет в точке максимального сближения с черной дырой, но не будет расти в бесконечность. Другими словами, аппарат и его экипаж могут пережить такое путешествие Важным моментом здесь является то, что физические эффекты, оказываемые на корабль, не будут растут бесконечно.