Новости новости квантовой физики

Все самое интересное и актуальное по теме "Квантовая физика". Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. Эти две физики – теория относительности и квантовая механика. Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер. В этой теме собраны новости о теоретических и практических достижениях квантовой физики.

Новости по теме: квантовая физика

Квантовая физика – это раздел физики, который изучает поведение элементарных частиц на микроуровне, используя квантовую механику. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Физики впервые ввели в состояние запутанности макрообъекты. Результат будет иметь практическое применение в квантовых коммуникациях и поможет создать новые ультрачувствительные датчики. Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике.

Квантовая механика

Долгожданный прорыв: квантовые вычисления стали более надежными - Телеканал "Наука" В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения.
Журнал «За науку»: Подборка свежих новостей по теме «квантовая физика». Статья Квантовая физика, Квантовые точки принесли ученому из России Нобелевскую премию, Разработан первый в мире квантовый аналог механического двигателя.
Будущее квантовых компьютеров: перспективы и риски Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов.
Чем занимались физики в 2023 году Интерфакс: Лауреатами Нобелевской премии по физике за 2022 год стали французский ученый Ален Аспе, американский физик Джон Клаузер и австрийский ученый Антон Цайлингер за исследования в квантовой механике, а именно за "эксперименты с запутанными фотонами.
Журнал «За науку»: В 1973 году физик Филип Андерсон описал ее в своей теории, отметив, что она бы сыграла ключевую роль в создании квантовых компьютеров.

Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров

Квантовая механика В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами.
Квантач – Telegram Физики считают, что бесконечный размер Мультивселенной может быть бесконечно больше. Мало того, что Бог играет в кости, в этом огромном казино квантовой физики.
Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть Центр передового опыта в области квантовой информации и квантовой физики Китайской академии наук (CAS) поставил 504-кубитный сверхпроводящий квантовый вычислительный чип под названием Xiaohong компании QuantumCTek Co., Ltd., сообщило агентство Xinhua.

С приставкой «супер-»: обзор новостей квантовой физики

Все самое интересное и актуальное по теме "Квантовая физика". 6 мая 2021 Новости. Еще один шаг к квантовому компьютеру: физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом. Международная группа физиков, в которую вошел руководитель лаборатории оптики спина СПбГУ профессор. В журнале «The Journal of chemical physics» опубликована статья «Magnetic dipole and quadrupole transitions in the ν2 + ν3 vibrational band of carbon dioxide» резидента Института квантовой физики Чистикова Д.Н. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов.

Квантовая физика о Боге, душе и Вселенной

Объемная запутанность, которая, как считается, имеет решающее значение для достижения «квантового преимущества» превосходства над классическими компьютерами , особенно сложна для изучения традиционными методами. Однако данная методика позволяет ученым эффективно создавать и анализировать ее. Помимо непосредственного применения, это исследование имеет и более широкое значение. Оно открывает путь к изучению сложных квантовых систем, которые в настоящее время недоступны даже для самых мощных суперкомпьютеров.

Информация должна быть подтверждена ссылкой на официальный первоисточник. Для примера: ссылка на другую группу в Одноклассниках не будет являться таким подтверждением. Создавать темы 1. Обсуждать темы в комментариях.

Жаловаться на нарушителей. Тема должна быть: 2. Текстовая часть может быть небольшая из двух, трех предложений. В конце темы должна стоять ссылка на Оригинальный источник.

Это стало возможно только сильно позже, когда появилось оборудование для фиксации состояния экспериментальных фотонов. Американский физик Джон Клаузер предложил эксперимент для проверки неравенства Белла, благодаря которому ему в 1972 году удалось доказать, что неравенства не выполняются, а значит, скрытых параметров нет. Однако работа на этом не завершилась. Клаузер и другие ученые продолжили искать ответы на некоторые спорные моменты. После эксперимента Джона Клаузера к процессу подключился Ален Аспект. Он усовершенствовал установку Клаузера и смог добиться того, чтобы изначальные условия, при которых испускались фотоны, не влияли на результаты измерений. Эксперимент подтвердил вывод ученых: квантовая теория верна, и нет никаких скрытых переменных.

История этих исследований началась еще в середине 1930-х годов со статьи Эйнштейна, Подольского и Розена, в которой был сформулирован парадокс, которым авторы пытались показать противоречивость квантовой механики. Попытки осмысления этого парадокса, важный вклад в которые внесли лауреаты, позволили в конечном итоге лучше понять квантовую основу нашего мира. Не знаю почему, но еще пару недель назад у меня появилось четкое предчувствие, что в этом году Шведская королевская академия наук присудит Нобелевскую премию по физике за решение какой-то абсолютно фундаментальной задачи или комплекса задач , поставленной, скорее всего, еще в первой половине прошлого века. И вот — впервые! Новыми лауреатами стали трое ученых, внесшие огромный вклад в теоретическое и экспериментальное исследование концептуальной проблемы, которую в середине 1930-х годов впервые осознали и обсудили такие титаны физики двадцатого столетия, как Альберт Эйнштейн, Нильс Бор и Эрвин Шрёдингер. Начну, как и положено, с персоналий. Clauser и австрийский ученый Антон Цайлингер Anton Zeilinger. Согласно постановлению Шведской королевской академии наук, члены этой интернациональной группы награждены «за эксперименты со спутанными фотонами, которые продемонстрировали нарушение неравенств Белла и дали начало квантовой информатике». Эта официальная формулировка при всей своей лапидарности весьма точно выражает суть достижений новых лауреатов. Прежде чем в них разбираться, отдадим должное биографиям лауреатов. Его научная карьера поначалу прогрессировала отнюдь не быстро, докторскую степень он получил только в 1983 году. Серию экспериментов по квантовой оптике, которые только что были удостоены Нобелевской премии, он выполнил вместе с коллегами, еще будучи аспирантом. Позднее он стал работать на стыке атомной физики и квантовой оптики, занявшись изучением бозе-эйнштейновских конденсатов и разработкой методов глубокого охлаждения атомов с помощью лазерных пучков. Он член Французской академии наук и Французской академии технологий, иностранный член Лондонского королевского общества и Национальной академии наук США. Аспе удостоен целого ряда очень престижных наград, включая премию Бальцана , медаль Альберта Эйнштейна , премию имени Макса Борна и премию Вольфа , которую он получил в 2010 году вместе с Клаузером и Цайлингером так что эту награду не случайно считают прелюдией к Нобелевской премии. Старейший из новых лауреатов Джон Клаузер скоро отпразднует 80-летие. Он родился в Пасадене 1 декабря 1942 года. В 1964 году он окончил в своем родном городе Калифорнийский технологический институт, через 7 лет защитил докторскую диссертацию в Колумбийском университете, а затем работал в Калифорнийском университете в Беркли, Национальной лаборатории имени Лоуренса и Ливерморской национальной лаборатории. Почетный профессор физики Венского университета professor emeritus Антон Цайлингер родился 20 мая 1945 года в городе Рид-им-Иннкрайс на севере Австрии. Он 8 лет учился в Венском университете, где в 1971 году получил степень доктора философии. Он также занимал профессорскую кафедру в Инсбрукском университете, но завершил карьеру профессором своей alma mater. В молодости Цайлингер занимался нейтронной интерферометрией, но потом прочно переключился на квантовую оптику и основания квантовой механики. За что и был награжден Нобелевской премией. Кое-что о квантовой спутанности Термин «квантовое спутывание» КС, quantum entanglement в постановлении Шведской академии не прочитывается. Однако работы новых лауреатов так или иначе связаны с теоретическим и экспериментальным освоением того свойства квантовых систем, которое он кодирует. С английского его также переводят и как «квантовое запутывание» и «квантовая запутанность», но мне больше нравится первая версия. Так что начать нам придется с обсуждения тех физических сущностей, которые за этим эффектом кроются. Вообще-то представление о квантовой спутанности появилось без малого 90 лет назад, а в неявном виде оно возникло еще во второй половине 1920-х годов. Однако в рабочий инструмент теоретической физики КС стало превращаться значительно позже, где-то в середине седьмого десятилетия прошлого века. И процесс этот поначалу был довольно медленным. Первые эксперименты, продемонстрировавшие реальность КС, были выполнены в 1970-е годы, а решающие — лишь в 80-е. Сначала этим эффектом занималась лишь горстка ученых, пытавшихся лучше понять, что нового внесла квантовая механика в наши представления о физической реальности. В последнее время интерес к КС сильно возрос, поскольку она является физической основой разработки квантовых компьютеров и сетей квантовых коммуникаций. Сообщения о том, что физики-экспериментаторы изготовили спутанные состояния новых и новых конфигураций частиц, нередко попадают не только в научные журналы, но и в СМИ. Как сказал бы полковник Скалозуб , чтобы понять КС, есть многие каналы. Можно дать формальное определение этого феномена оно не так уж и сложно и немедленно перейти к конкретным иллюстрациям. Однако такое изложение оставило бы за кадром поистине драматические события в истории физики, отмеченные именами ее величайших творцов. Поэтому начнем действительно ab ovo, с середины тридцатых годов двадцатого столетия. ЭПР-парадокс Квантовая механика вошла в пору зрелости удивительно быстро. Ее возраст принято отсчитывать от публикаций основополагающих работ Вернера Гейзенберга и Эрвина Шрёдингера в 1925—26 годах. Всего через десять лет новая теория превратилась в общепризнанную основу понимания явлений микро- и макромира в очень широком спектре областей от ядерной физики до теории твердого тела. К тому времени квантовая механика получила строгий математический формализм прежде всего благодаря гению Поля Дирака и была неоднократно подтверждена экспериментально. Теория столь уверенно двигалась от успеха к успеху, что практически все физики стали принимать ее как истину в последней инстанции. Казалось, что эту уверенность подтверждает и строгий математический анализ. В 1932 году великий математик Иоганн в американской эмиграции Джон фон Нейман опубликовал фундаментальную монографию «Математические основы квантовой механики». В этой книге он сформулировал теорему, из которой, по его мнению, следовало, что любая адекватная теория элементарных процессов может давать только статистические предсказания. По его словам, если бы детерминистская теория этих процессов оказалась возможной, квантовая механика должна была быть «объективно ложной», а никакие экспериментальные данные не позволяли сделать такой вывод. Эту теорему часто интерпретировали как доказательство невозможности теорий микромира, основанных на предположении, что присущее квантовой механике вероятностное описание реальности можно превратить в детерминистское. Для этого предполагалось ввести в теоретический аппарат физики дополнительные величины, описывающие поведение микрообъектов на более глубоком уровне, нежели квантовый. Эти гипотетические величины получили название скрытых переменных, или скрытых параметров. Однако через несколько лет после публикации книги фон Неймана в этой теореме обнаружили довольно элементарную ошибку. Фон Нейман предполагал как аксиому, что среднее значение суммы операторов квантовой механики, которые соотносятся с физически наблюдаемыми динамическими величинами на языке математики такие операторы называются самосопряженными, или эрмитовыми , должно равняться сумме их средних значений. Эта посылка оправдана в том случае, если эти наблюдаемые величины могут быть измерены в совместимых друг с другом экспериментах. Однако она не работает в случае, если измерения каждой их двух наблюдаемых взаимно несовместимы, поскольку тогда определение их суммы теряет физический смысл. Эту проблему в принципе можно преодолеть с помощью дополнительных измерений на другой аппаратуре, которые могут определить новую наблюдаемую, соответствующую этой сумме. Но это потребует введения еще одного оператора, о котором в теореме фон Неймана ничего не говорится. В итоге доказательство фон Неймана теряет силу. Интересно, что первой к такому выводу пришла в 1935 году ученица великого математика Эмми Нётер Грета Герман Grete Hermann , но ее работа была опубликована в малоизвестном философском журнале и потому физики ее просто не заметили. В профессиональном сообществе уязвимость теоремы фон Неймана была осознана только в 1950-е годы. Однако у квантовой механики и раньше имелись критики — и прежде всего Альберт Эйнштейн. Ему не нравилось в ней многое: принципиально вероятностный характер, гейзенберговское соотношение неопределенностей и вытекающая из него невозможность одновременного определения координат и скоростей частиц, отсутствие ясности в решении проблемы квантовомеханических измерений. Но больше всего Эйнштейна раздражала несовместимость его собственных представлений о физической реальности с так называемой копенгагенской интерпретацией квантовой механики , предложенной Нильсом Бором и его единомышленниками. Согласно Бору, состояние любой квантовой системы нельзя рассматривать безотносительно к аппаратуре, с помощью которой получена информация о ее поведении. Теория в состоянии предсказать вероятности тех или иных исходов измерений квантовомеханических объектов, но ровно ничего не может сказать о том, каковы же значения измеряемых величин «на самом деле» — строго говоря, сам этот вопрос по сути беспредметен. Состояние «неизмеренной» системы не просто неизвестно — оно вообще не определено, а посему и рассуждать о нем не имеет смысла. Эйнштейна не устраивала подобная логика, и он всячески пытался ее опровергнуть. Для этого он изобретал воображаемые опыты, которые Бор успешно интерпретировал в свою пользу. Однако Эйнштейн не отступал. В 1935 году, уже работая в США в принстонском Институте фундаментальных исследований, он опубликовал описание очередного мысленного эксперимента, который, по его расчетам, неопровержимо доказывал ущербность квантовой теории. Эта модель послужила предметом долгих дискуссий Эйнштейна со своим ассистентом Натаном Розеном и коллегой по институту Борисом Подольским , уроженцем Таганрога и бывшим руководителем отдела теоретической физики харьковского Физико-технического института. Статья, фактически написанная Подольским, появилась за подписями всех троих ученых A. Einstein, B. Podolsky and N.

Нобелевка по физике за изучение квантовой запутанности — что это значит

квантовая физика: самые последние новости и статьи — Профиль. Страница 1 Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только.
Просто о сложном: принцип неопределенности и другие парадоксы квантовой физики Последние новости на сайте.
Физики обнаружили гигантский невзаимный перенос заряда в топологическом изоляторе Все самое интересное и актуальное по теме "Квантовая физика".
О связи Канта с современной квантовой физикой рассказали в БФУ - Российская газета Мировые новости экономики, финансов и инвестиций.
Квантовая физика | Group on OK | Join, read, and chat on OK! 6 мая 2021 Новости. Еще один шаг к квантовому компьютеру: физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом. Международная группа физиков, в которую вошел руководитель лаборатории оптики спина СПбГУ профессор.

Сломали систему

  • Квантовые технологии — Квантовые вычисления, алгоритмы и вот это всё / Хабр
  • Международная гонка кубитов
  • Введение. Принципиальная сложность понимания квантовой теории
  • Первые в мире: ученые МФТИ добились прорыва в области квантовых компьютеров
  • 1. Создание имплантов, поднявших на ноги парализованного пациента

В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный

Фото: Flickr Однако эта более крупная система делает влияние окружающей среды еще более агрессивным, а закодированный кубит — более хрупким. Из-за этого эффекта и осложнений, связанных с дополнительными компонентами для исправления ошибок, этот процесс не продливал срок службы квантового бита на практике. Исследователи говорят, что на самом деле безубыточность даже с неисправленным кубитом — редкое событие. Вопреки теоретическим обещаниям, в большинстве экспериментов исправление ошибок ускоряет декогерентность квантовой информации. Что сделали ученые? В ходе эксперимента ученые впервые показали, что увеличение избыточности системы, активное обнаружение и исправление квантовых ошибок обеспечило повышение устойчивости квантовой информации. Это больше, чем просто демонстрация принципа», — объясняет физик.

Группе ученых удалось более чем удвоить время жизни квантовой информации. Их кубит с исправлением ошибок жил 1,8 миллисекунды — в квантовых вычислениях все происходит быстро. Они достигли результатов, используя код исправления ошибок, который изобретен в 2001 году. Иллюстрация кубитов.

Это долгожданная цель и одна из самых сложных задач в области квантовой физики. Читайте «Хайтек» в Эксперимент, проведенный под руководством Майкла Деворета из Йельского университета, доказывает , что квантовая коррекция ошибок работает на практике.

Это произошло спустя десятилетия после того, как физики предложили его теоретические основы. Квантовая коррекция ошибок — это процесс, предназначенный для сохранения квантовой информации в неизменном виде в течение более длительного периода времени, чем если бы та же информация хранилась в аппаратных компонентах без каких-либо исправлений. Что такое кубиты? Информация в классических вычислениях поступает в виде битов, соответствующих единицам или нулям. В квантовых вычислениях она хранится в специальных устройствах с квантовыми свойствами, которые известны как квантовые биты или «кубиты». IBM 7 Qubit Device.

Фото: Flickr В лаборатории Йельского университета их создают из сверхпроводящих цепей, охлаждаемых до температур в 100 раз ниже, чем в открытом космосе. Каждый кубит представляет единицу или ноль, или, как ни странно, и единицу, и ноль одновременно. Этот «квантовый параллелизм» — одно из свойств, которое позволяет квантовым компьютерам выполнять вычисления.

Физики открыли новый тип квантовой запутанности Георгий Голованов9 января 2023 г. В экспериментах с ускорителем частиц это явление дало им возможность рассмотреть во всех подробностях внутренности ядер атомов. Подпишитесь , чтобы быть в курсе. Квантовая запутанность парадоксальный феномен, возникающий, когда пара частиц становится так тесно связана, что их более невозможно рассматривать как две отдельные частицы, вне зависимости от разделяющего их расстояния. Более того, при изменении одной мгновенно меняется и вторая. В теории, этот эффект мог бы лечь в основу технологии сверхсветовой связи, пишет ZME Science.

Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Обычно наблюдения за квантовой запутанностью проводятся на примере пар фотонов либо электронов.

Поляритонные приборы позволят обрабатывать огромные потоки информации со скоростью, близкой к скорости света. Результат теор. Яркие пятна — это бозе-эйнштейновские конденсаты экситонных поляритонов. Конденсат Бозе — Эйнштейна был получен в полупроводниковом микрорезонаторе, содержащем слой нового кристаллического материала диселенида молибдена толщиной в один атом. Локализация света в слое такой малой толщины была достигнута впервые. В результате этого исследования могут быть созданы новые типы лазеров, основанные на двумерных кристаллах, позволяющие создавать кубиты — квантовые транзисторы, основу квантового компьютера, работающего на светожидкости. Руководитель лаборатории оптики спина СПбГУ профессор Алексей Кавокин Важно понимать: как не раз отмечал ученый, квантовые компьютеры называют сегодня атомной бомбой XXI века, ведь они открывают огромные возможности не только в области, например, создания новых лекарств, но и в области кибератак. Имея компьютер с такими мощностями, можно разгадать практически любой шифр, поэтому перед учеными сегодня также стоит важная задача защиты квантовых устройств — квантовой криптографии, в которой открытия Алексея Кавокина и его коллег также играют очень важную роль.

Квантовые точки: что это такое и почему за них дали нобелевскую премию?

Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. Научный руководитель Центра квантовых технологий МГУ Сергей Кулик представил современное состояние квантовых технологий в России и в мире на научном семинаре Национального центра физики и математики (НЦФМ) в рамках Десятилетия науки и технологий. Новости науки и техники/. Новый эксперимент подтверждает краеугольное предположение о квантовых вычислениях; удваивая жизнь кубита, исследователи доказали ключевую теорию квантовой физики. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки.

Похожие новости:

Оцените статью
Добавить комментарий