Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа.
Квантовые вычисления – следующий большой скачок для компьютеров
Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха. Особенно на фоне последних новостей из IBM об открытии квантового вычислительного центра IBM Quantum Computing Center в Нью-Йорке на базе пяти 20-кубитных и одной 53-кубитной системы. «Пять тысяч кубитов» звучат гораздо ярче, чем сообщение о недавнем эпохальном. Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы.
Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений
Особенно на фоне последних новостей из IBM об открытии квантового вычислительного центра IBM Quantum Computing Center в Нью-Йорке на базе пяти 20-кубитных и одной 53-кубитной системы. «Пять тысяч кубитов» звучат гораздо ярче, чем сообщение о недавнем эпохальном. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики, учёные МГУ и Российский квантовый центр разработали новый метод для управления квантовыми объектами – кубитами. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок.
Технологии квантовых компьютеров в 2022: достижения, ограничения
Он изготовлен, идет измерение характеристик и калибровка. После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking. Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор. Излучение, пройдя через резонатор, становится очень чистым. В итоге мы глубоко улучшаем лазерную систему, которая используется для взаимодействия с ионами.
Нам надо, чтобы они двигались всегда одинаково, а сейчас они двигаются в течение большого промежутка времени — дня например, немного по-разному. С высокой достоверностью — В целом удается повысить достоверность? Мы далеко продвинулись, но последние проценты всегда самые сложные. Мы также увеличиваем время когерентности нашей системы, модернизируя систему компенсации магнитного поля вблизи иона. Добиваемся, чтобы магнитное поле было одинаковым и стабильным.
Раньше мы для этого использовали катушки и прецизионные источники тока, сейчас переходим на постоянные магниты. Это тоже должно расширить спектр задач, которые мы сможем решать на нашем компьютере. Таким образом, мы модернизируем почти все компоненты компьютера и параллельно в соседней комнате собираем еще один. Обращаются с запросом много научных групп, но, к сожалению, большинству мы вынуждены отказывать, потому что стоим перед выбором: либо предоставить им компьютер, либо модернизировать его. И чаще выбираем модернизацию.
Хотя бы примерно. Чтобы посчитать молекулу гидрида лития, запускается около 200 цепочек расчетов. Там довольно сложные алгоритм и постобработка. Каждую цепочку нужно запускать от 1 тыс. Кроме того, мы бы хотели провести научные исследования, чтобы масштабировать квантовые компьютеры.
Для этого нужен третий компьютер, а лучше и четвертый.
Точно так же ведёт себя и кубит — пока вы не воздействуете на него измерительным прибором, он так и будет пребывать сразу во всех состояниях между нулём и единицей. Звучит странно, но это одна из главных заповедей квантовой механики. Вокруг суперпозиции вообще ведётся много споров в научных кругах — взять хотя бы знаменитый парадокс кота Шрёдингера, который то ли жив, то ли мёртв, то ли вообще живёт сразу в нескольких параллельных вселенных.
Читайте также: Кот Шрёдингера: что это за эксперимент и в чём его смысл Мало нам суперпозиции — чтобы вычисления совершались, кубиты должны быть связаны между собой. И если в обычной машине эту роль берут на себя токопроводящие дорожки, в квантовой нас выручает квантовая спутанность. Например, в лабораторных условиях мы можем получить несколько фотонов в спутанном состоянии — и тогда, где бы эти фотоны ни оказались, хоть на разных концах Вселенной, они будут связаны между собой. Если изменить состояние одной, тут же изменятся и другие спутанные с ней частицы.
Звучит совсем как магия, но это реальный физический закон: с его помощью учёные научились телепортировать квантовое состояние на многие километры. Чем квантовый компьютер лучше обычного Благодаря тому, что кубиты находятся сразу в нескольких состояниях и связаны между собой, квантовые машины могут параллельно перебрать сразу все варианты решения — в отличие от обычных компьютеров, которые перебирают варианты последовательно и довольно медленно. Можно условно сравнить это с калейдоскопом: если с обычным компьютером вам нужно покрутить прибор, чтобы получить разные картинки, то квантовый уже давно всё «покрутил» и сложил в одно большое полотно — осталось как-то достать из него нужный фрагмент. И здесь уже начинаются сложности — дело в том, что квантовые компьютеры выдают не точные результаты, а вероятностные, то есть приближённые к реальности.
Поэтому для их интерпретации нужны особые, квантовые алгоритмы. Такие алгоритмы уже существуют — но заточены они на решение узких математических задач, а потому мало применимы в реальной жизни. Переложить реальные человеческие задачи на квантовый язык непросто — отчасти поэтому такие машины ещё нескоро станут массовыми. Другая сложность — декогеренция.
Это когда частица теряет свои свойства при столкновении с внешним миром. Дело в том, что суперпозиция — штука тонкая, и нарушить её может буквально что угодно: от солнечной бури до изменения климата. Поэтому здесь не получится просто накрыть всё медной крышкой и замазать термопастой — надо искать изоляцию посерьёзнее : Разработка такой изоляции — отдельный технологический вызов. Пока что единственный рабочий способ — охладить всю систему до абсолютного нуля, чтобы защитить её от внешних воздействий.
Делается это обычно с помощью жидкого азота, ионных ловушек или магнитного поля, а потому такая система охлаждения выглядит весьма увесисто. А ещё — довольно сложны в производстве. Но учёные уверены, что это преодолимо: достаточно вспомнить, сколько места занимал один из первых компьютеров Mark I. И ничего — сейчас его далёкие потомки красуются в большинстве комнат и офисов мира.
Для логического кубита Nord Quantique нужен всего один физический кубит или, по крайней мере, десятки, а не тысячи всех этих петелек, резонаторов, коаксиальных разъёмов и прочей мелочи, которая в масштабе представляет то, что мы видим на современных фотографиях квантовых систем: огромные хромированные люстры. По словам главного квантового архитектора IBM Маттиаса Стефана Mattias Stephan , усилия по созданию этого устройства «открыли путь к масштабированию» квантовых вычислений. Источник изображений: IBM Процессор Condor является частью долгосрочных исследований IBM по разработке крупномасштабных квантовых вычислительных систем. Хотя он располагает огромным количеством кубитов, производительность его сравнима с 433-кубитным устройством Osprey, дебютировавшим в 2022 году. Это связано с тем, что простое увеличение количества кубитов без изменения архитектуры не делает процессор быстрее или мощнее. По словам Стефана, опыт , полученный при разработке Condor и предыдущего 127-кубитного квантового процессора Eagle , проложил путь к прорыву в перестраиваемой архитектуре процессора Heron. Он был разработан с учётом модульности и масштабирования». Ранее в этом году компания IBM продемонстрировала, что квантовые процессоры могут служить практическими платформами для научных исследований и решения проблем химии, физики и материаловедения, выходящих за рамки классического моделирования квантовой механики методом грубой силы. После этой демонстрации исследователи и учёные из многочисленных организаций, включая Министерство энергетики США, Токийский университет, Q-CTRL и Кёльнский университет, использовали квантовые вычисления для решения более крупных и сложных реальных проблем, таких как открытие лекарств и разработка новых материалов.
Эта система на базе трёх квантовых процессоров Heron станет основой архитектуры квантовых вычислений IBM следующего поколения. Она сочетает в себе масштабируемую криогенную инфраструктуру и классические серверы с модульной электроникой управления кубитами. В результате систему можно будет расширять в соответствии с будущими потребностями, и «апгрейдить» при появлении следующего поколения квантовых процессоров. Стремясь облегчить разработчикам и инженерам работу с квантовыми вычислениями, IBM анонсировала выход в феврале 2024 года версии 1. В дополнение к Qiskit, IBM анонсировала Qiskit Patterns — способ, позволяющий квантовым разработчикам легко создавать код и оптимизировать квантовые схемы с помощью Qiskit Runtime, а затем обрабатывать результаты. На презентации он продемонстрировал использование генеративного ИИ на базе Watson X для создания квантовых схем при помощи базовой модели Granite, обученной на данных Qiskit. Это две ключевые характеристики, которые могут привести к появлению коммерческих универсальных квантовых компьютеров. Архитектура испытана на одно- и двухкубитовых схемах, чем подтвердила свою перспективность. Источник изображения: MIT Современные квантовые вычислители компаний Google и IBM на сверхпроводящих кубитах для построения логических элементов используют так называемые трансмониевые кубиты transmon.
В основе таких кубитов лежит джозефсоновский переход , работающий на одной частоте. Около десяти лет назад были предложены кубиты на двухчастотных джозефсоновских переходах. Архитектурно трансмониевые кубиты можно считать одиночками, тогда как флюксониевые кубиты задействованы группами — цепочками, в которых несколько или даже множество джозефсоновских переходов. В этих группах низкочастотные флюксониевые кубиты использовались для хранения квантовых состояний кубитов , а высокочастотные — для логических операций гейтов. Со временем было показано, что флюксониевые кубиты способны примерно на порядок дольше удерживать кубиты в когерентном состоянии, что давало время на выполнение логических операций с более низкой вероятностью возникновения ошибок, чем в случае трансмониевых кубитов. Так, одна из работ лета этого года показала, что время жизни флюксониевого кубита достигло 1,43 мс. До недавнего времени специалисты мало работали с флюксонием, но такие его выдающиеся качества игнорировать нельзя — это может стать кратчайшим путём к производительным и масштабируемым универсальным квантовым компьютерам. Отказоустойчивая квантовая архитектура, в которой трансмониевый кубит связывает два флюксониевых кубита. Источник изображения: American Physical Society В новой работе исследователи из MIT показали, как можно повысить надёжность работы помехоустойчивость флюксониевых кубитов.
Дело в том, что сильная связь, образующаяся между флюксониевыми кубитами в цепочке, кроме полезных свойств также вела к увеличению влияния ошибок. Поэтому учёные фактически разбавили флюксониевые кубиты трансмониевыми, врезав трансмониевый элемент между двумя флюксониевыми. Источник изображения: huawei. Китайская разведывательная база на Кубе действует как минимум с 2019 года, заявил близкий к американским властям источник WSJ — Пекин и Гавана совместно управляли четырьмя станциями прослушивания на острове, а сейчас ведут переговоры о создании совместного военного учебного центра на северном побережье Кубы. Примечательно, что комментарии по поводу инцидента отказались дать не только американские посольства Китая и Кубы, но также офис Директора Национальной разведки США и администрация президента США. В Huwaei в очередной раз подчеркнули, что не имеют отношения к китайской разведке.
В статье можно подробнее ознакомиться с деталями реализации кубитной архитектуры. Результаты действительно впечатляют — время декогеренции в 40 секунд существенно превосходит предыдущие показатели и потенциально позволяет производить очень объёмные вычисления.
Конечно, при условии, что информация в кубитах не будет потеряна вследствие неточности применяемых к ним гейтов, особенно двухкубитных. И вот тут информации о характеристиках нового устройства достаточно мало. По какой-то причине авторы не выносят точных значений фиделити двухкубитного гейта в своей системе в первые строки пресс-релиза. Нет этих данных и в упомянутой статье, а документ с общим описанием оригинальной технологии, на который ссылается пресс-релиз, содержит лишь концептуальное объяснение работы двухкубитного гейта для атомов на основе эффекта Ридберговской блокады — давно известного и широко используемого подхода, в оттачивании которого и состоит одна из главных задач на пути масштабирования атомных вычислителей. Вместо этого Atom Computing предоставляет в основном информацию о технологиях создания атомных регистров, точности сохранения в них информации и её дальнейшего считывания. Таким образом, преждевременно говорить, что мы подошли к окончанию эпохи NISQ — Noisy Intermediate-Scale Quantum computers, шумных квантовых вычислителей среднего масштаба. Для полноценного осознания величины совершенного прорыва необходимо дождаться исчерпывающих данных о точности работы нового компьютера в реальных квантовых алгоритмах. В любом случае, 1000 кубитов — существенный шаг вперёд для индустрии.
Подписка на дайджест
- Онлайн-курсы
- Как он работает?
- Что такое квантовые компьютеры и квантовые симуляторы
- Будущее квантовых компьютеров: перспективы и риски
- В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
- Упрямый кубит
Почему от квантового компьютера зависит национальная безопасность и когда он появится в России
Используя Tunnel Falls, учёные могут сразу же приступить к экспериментам и расчётам, вместо того чтобы пытаться изготовить свои собственные устройства. В результате становится возможным более широкий спектр исследований, включая изучение основ кубитов и квантовых точек и разработка новых методов работы с устройствами с несколькими кубитами. Источник изображений: Intel «Tunnel Falls — это самый совершенный на сегодняшний день чип Intel с кремниевыми спиновыми кубитами, созданный на основе многолетнего опыта компании в разработке и производстве транзисторов. Это следующий шаг в долгосрочной стратегии Intel по созданию полнофункциональной коммерческой системы квантовых вычислений. Несмотря на то, что на пути к устойчивому к ошибками квантовому компьютеру необходимо решить фундаментальные вопросы и задачи, академическое сообщество теперь может изучить эту технологию и ускорить развитие исследований», — сообщил Джим Кларк Jim Clarke , директор Quantum Hardware, Intel. Tunnel Falls производится на 300-мм пластинах на фабрике Intel D1. Каждое кубитное устройство, по сути, представляет собой электронный транзистор, что позволяет изготавливать его по технологии, аналогичной стандартной линии на основе комплементарных оксидов металлов и полупроводников CMOS. Эти чипы могут образовывать конфигурации от 4 до 12 кубитов, которые можно изолировать или использовать в операциях одновременно, в зависимости от потребностей исследователей. Intel считает, что кремниевые спиновые кубиты превосходят другие технологии кубитов из-за их синергии с передовыми транзисторами. Следует отметить усилия Intel, направленные на дальнейшие исследования аппаратного обеспечения — похоже, что компания не готова остановиться на одном решении.
Ведь, как и большинство кубитов, спиновые кубиты на основе полупроводников могут быть реализованы разными способами. Базовая технология позволяет обнаруживать отдельные электроны в изолированных ямах и управлять их спинами, чтобы кодировать информацию в квантовом состоянии. По его словам, Intel изучает множество параметров, таких как разные размеры квантовых точек, разная геометрия, разная длина кубитов. Intel также встраивает в свой чип средства тестирования для определения производительности. Intel объявила о сотрудничестве с лабораторией физических наук LPS университета Мэриленда, Qubit Collaboratory LQC в Колледж-Парке, национальным исследовательским центром квантовых информационных наук QIS , Sandia National Laboratories, университетом Рочестера и университетом Висконсин-Мэдисон для продвижения исследований в области квантовых вычислений. Компания планирует предоставить доступ для разработчиков и исследователей к своему набору инструментов Intel Quantum Software Development Kit SDK версии 1. Это своего рода дезагрегированный подход. На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк.
LPS Qubit Collaboratory LQC является одним из исследовательских центров министерства обороны в области квантовых информационных наук QIS , учреждённых в рамках Закона о национальной квантовой инициативе 2018 г. Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства. По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния. Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения. Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK. Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы.
Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Учёный держит квантовый чип пинцетом, перед установкой на плату.
Использование технологий КК можно сократить время до 1-2 лет. Применение КК в фармакологии выведет нас на новый уровень в борьбе с заболеваниями. Б «Суперкомпьютеры в медицине» 28. Анализ рынка. Лидеры в области квантовых компьютеров Согласно последнему анализу индустрии квантовых вычислений, проведенному Persistence Market Research, выручка рынка составит 6,9 млрд долларов США в 2021 году. Persistence Market Research сообщает, что решения для квантовых вычислений принесли выручку в размере 5,6 млрд долларов в 2020 году. Мы стремимся решать сложные проблемы, которые самые мощные суперкомпьютеры в мире не могут решить и никогда не смогут». D-Wave Systems Inc — создают и поставляем системы, облачные сервисы, инструменты разработки приложений и профессиональные услуги для поддержки непрерывного процесса квантовых вычислений для предприятий и разработчиков Microsoft позволяет получить доступ к разнообразному квантовому программному обеспечению, оборудованию и решениям от Microsoft и партнеров. Google продвигает современные технологии квантовых вычислений и разрабатывает инструменты, позволяющие исследователям работать за пределами классических возможностей. Intel — разработка КК. Atom Computing, Inc создает масштабируемые квантовые компьютеры из отдельных атомов. Xanadu Quantum Technologies Inc производство масштабируемых КК, Полностью управляемый квантовый облачный сервис, предлагающий прямой доступ. Strangeworks,Inc Все квантовые инструменты, которые когда-либо понадобятся, представлены в едином пользовательском интерфейсе. IonQ производитель компактных КК широкого использования. Quantum Circuits, Inc. Создание квантовых компьютеров, рассчитанных на масштабирование. Huawei Высокопроизводительная облачная платформа для крупномасштабного моделирования квантовых схем на основе мощной вычислительной инфраструктуры и инфраструктуры хранения HUAWEI CLOUD Rigetti — компания, занимающаяся интегрированными системами. Создает квантовые компьютеры и сверхпроводящие квантовые процессоры, на которых они работают. Благодаря платформе Quantum Cloud Services QCS машины могут быть интегрированы в любое публичное, частное или гибридное облако. Honeywell — разработка компьютера с высококачественными кубитами. Квантовые компьютеры и фондовый рынок Компании, связанные с КК можно разделить на 2 группы. Каждая имеет свои особенности и инвестиционный подход. Первая группа производители КК. Это компании которые занимаются разработкой и производством квантового оборудования и ПО. В этой группе можно выделить 2 категории.
Подписывайтесь на «Чердак» и исследуйте мир вместе с нами! Показать больше.
Подписывайтесь на «Чердак» и исследуйте мир вместе с нами! Показать больше.
Количество кубитов в квантовых компьютерах — это обман. Вот почему
Среднее время жизни кубита составляет порядка 14 мс, а среднее время одной квантовой операции — всего 50 наносекунд. Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Что такое кубит, для чего он нужен и как физически может быть реализован? Особенно на фоне последних новостей из IBM об открытии квантового вычислительного центра IBM Quantum Computing Center в Нью-Йорке на базе пяти 20-кубитных и одной 53-кубитной системы. «Пять тысяч кубитов» звучат гораздо ярче, чем сообщение о недавнем эпохальном.
В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений
В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора.