По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Это и есть яркое проявление фрактальной геометрии в природе. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. ПРОСТО ФРАКТАЛ. Фракталы в природе.
Войти на сайт
Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек.
Войти на сайт
Фракталы в природе. | Фракталы в природе. |
Фракталы в природе. | Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. |
Фракталы - Красота Повтора | Сакральная Геометрия | Грани РазУма | Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. |
Молния фрактал | фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов. |
Войти на сайт
В молнии раскрывается структура, в которой каждая ветвь — это копия всей формы. Береговые линии, горные хребты, географические границы, русла рек, разветвления их дельт повторяются множество раз. В воде повторяются узоры волн, водоворотов, течений. Большинство природных фракталов отличаются неполным и неточным повторением. В малом масштабе они исчезают, потому что ограничены размерами живой клетки или молекул. О влиянии природных фракталов пишут авторы сайта Mindfule Ecotourism , посвященного экотуризму. Они утверждают, что самоподобные ветвящиеся шаблоны, на которые мы смотрим, повторяют строение нашего мозга, легких, сосудистой системы, позвоночника, нервной системы. В этом подобии и созвучии кроется секрет такого сильного влияния природы на человека. Разум человека привлекает симметрия, которая позволяет мозгу перестать анализировать все вокруг и просто наслаждаться окружающими закономерностями, проявляющимися в строении деревьев, растений, цветов, гор. Созерцание природных фракталов приносит огромную пользу психическому здоровью людей.
Виды фракталов Абстрактное самоподобное множество представить сложно. Наверняка вы задались вопросом: «А какими они вообще бывают, эти фракталы? Геометрические Здесь все начинается с простой детали — строится такой фрактал от обычной геометрической фигуры. Прямо на этой основе чертится фрагмент, затем снова, и снова... И каждый раз уменьшается масштаб. На самом деле этот вид бесконечных множеств весьма прост для понимания и воплощения: любой школьник может удивить своего учителя по математике, нарисовав в тетради геометрический фрактал. И даже те, кто далёк от точных наук, смогут найти что-то для себя — в изобразительном искусстве геометрические фракталы использовали Джексон Поллок, Луис Уэйн, Мауриц Корнелис Эшер и другие художники. Весьма простые алгоритмы могут стать почвой для самого причудливого и ветвистого «дерева», которое вы когда-либо видели. Нужно только начертить график. Типовым примером алгебраического фрактала считается множество Мандельброта. Для его построения используют комплексные числа. Если в процессе итерации это повторение каких-либо действий, не приводящее к вызовам самих себя случайным образом менять любые параметры, получится такой фрактал. Именно поэтому такой тип множества не визуализируется вручную — только в программе. Пожалуй, это самый «виртуозный» вид фракталов. Причём это не фракталы в чистом виде: авторы заимствуют понятия и концепты: отсюда название. Концептуальный фрактал и вовсе может состоять из нескольких видов. Фракталы в природе После того, как в 1975 году Мандельброт опубликовал свою основополагающую работу о фракталах, одно из первых практических применений появилось в 1978 году, когда Лорен Карпентер захотел создать несколько сгенерированных компьютером гор. Используя фракталы, которые начинались с треугольников, он создал удивительно реалистичный горный хребет. В 1990-х годах Натан Коэн, вдохновленный снежинкой Коха, создал более компактную радиоантенну, используя только проволоку и плоскогубцы. Сегодня антенны в сотовых телефонах используют такие фракталы, как губка Менгера, фрактал Вичека и фракталы, заполняющие пространство, как способ максимизировать мощность восприятия при минимальном объеме пространства. Примеры фракталов в природе Капуста сорта «романеско» Романеско она же романская брокколи — итальянский сорт капусты. Внешний вид этого растения напоминает природный фрактал: каждый бутон вбирает в себя бутоны поменьше. А они, в свою очередь, тоже принимают облик логарифмической спирали. Это «повторение за самим собой» воспроизводится несколько раз.
Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры. Вот несколько примеров алгебраических фракталов: Множество Мандельброта — это один из самых известных алгебраических фракталов. Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости. Результатом является изображение, которое состоит из бесконечного количества деталей и самоподобных структур. Фрактал Жюлиа — это еще один пример алгебраического фрактала, который создается с помощью итеративного применения формулы к каждой точке на комплексной плоскости. Он имеет разнообразные формы и структуры, которые зависят от выбранной формулы и параметров. Бассейны Ньютона также являются примерами алгебраических фракталов. Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения алгоритмом Ньютона на комплексной плоскости для функции действительной переменной метод Ньютона называют методом касательных, который обобщается для комплексной плоскости. Алгебраические фракталы обладают приближенной самоподобностью. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими. Типичный представитель данного класса фракталов — «плазма». Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более «рваным» будет рисунок. Стохастическим природным процессом является броуновское движение. С помощью компьютера такие процессы строить достаточно просто: надо просто задать последовательности случайных чисел и настроить соответствующий алгоритм. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря, процесса электролиза. При этом получаются объекты, очень похожие на природные — несимметричные деревья, изрезанные береговые линии и так далее. С помощью алгоритма, похожего на плазму строится карта высот. Плазма Практическая часть исследовательской работы Как программировать фракталы? Изучив фракталы в теории, мне стало интересно, как это работает на практике? Я решил начать построение простых геометрических фракталов с помощью языка программирования Лого. Черепашья графика позволяет наглядно представить геометрические фракталы.
По такому же принципу можно смоделировать и трёхмерный треугольник Серпинского. В её основе лежит знаменитая теорема Пифагора, согласно которой сумма квадратов катетов равна квадрату гипотенузы. Полученный геометрический фрактал напоминает дерево, поэтому его и назвали деревом Пифагора. Изображение: Лев Сергеев для Skillbox Media Знакомым с алгоритмами читателям дерево Пифагора может напомнить другое, бинарное дерево. В целом, бинарный поиск напоминает принцип Кантора, где на каждой итерации получается вдвое больше разветвлений отрезков. Всё это — ещё одна иллюстрация самоподобия, о котором мы говорили ранее. Алгебраические фракталы Алгебраические фракталы, в отличие от геометрических, основываются на формуле, а не на фигурах, но также рекурсивно итерируются. Выглядят они ещё более причудливо, чем те, что мы рассмотрели выше. Остановимся на комплексных числах. Вы наверняка знаете, что извлекать квадратный корень из отрицательных чисел нельзя — это следует из того, что любое отрицательное число в квадрате является положительным. Логика железная и справедливая, но лишь для действительных чисел. Вот здесь-то и ломается привычная арифметика. Нас ведь с пятого класса учили, что из отрицательных чисел квадратный корень не извлечь», — скажете вы и будете правы! Да, такая запись на первый взгляд кажется парадоксальной, и многие математики на первых порах с подозрением относились к подобной «магии». Но именно она в XVI веке помогла решить некоторые проблемные кубические уравнения. А потом комплексные числа нашли применение и в других областях, например в тригонометрии. Возвращаемся к нашему Мандельброту. Небольшая шпаргалка, чтобы напомнить, о чём шла речь: Изображение: Лев Сергеев для Skillbox Media Суть фрактала Мандельброта та же, что и у предыдущих: на каждой новой итерации мы используем значение функции из предыдущего шага. В результате получаются невероятные картины! Приближаясь к любым координатам множества Мандельброта, вы увидите всё новые и новые бесконечные узоры, которые напоминают изначальный вариант. Рассматривать и изучать такие фракталы можно бесконечно.
Фракталы в природе презентация - 97 фото
нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале В своей книге “Фрактальная геометрия природы” (1982) Бенуа Мандельброт ввел термин фракталы, и создал математику для их описания. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. чудо природы, с которым я предлагаю вам познакомиться. Посмотрите потрясающие примеры фракталов в природе.
Что такое фрактал?
Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024. Ученые, изучая структуру цитратсинтазы, были поражены изображениями, полученными с помощью электронного микроскопа. Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей. Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе. Различные белковые цепи взаимодействуют друг с другом по-разному, создавая сложный и непредсказуемый узор, подобный треугольнику Серпинского.
Эволюционная игра Зачем же цианобактерии понадобился фрактальный фермент? Удивительно, но, похоже, это всего лишь игра случая, эволюционный каприз. Ученые провели эксперимент, в котором генетически модифицировали цианобактерии, лишив их цитратсинтазу способности собираться во фрактальные структуры.
Нас заинтересовала такая геометрическая фигура, как дерево Пифагора, поскольку, она показалась наиболее удобной для реализации и наглядно показывающей свойство самоподобия. Второй этап - практический. В его основу был положен анализ способов построения фрактальных деревьев. Метод «Систем Итерируемых Функций» появился в середине 80-х гг. Он представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Сначала мы выполнили построение одного отрезка в плоскости Оху, а затем проводили аффинные преобразования с изменением координат его концов, поворотом вокруг осей и изменением размера с определенным коэффициентом рис.
Впоследствии количество уровней смогло увеличиться до 7.
Эко «Имя розы» Т. Стоппард «Розенкранц и Гильденстерн мертвы» сцена с представлением перед королём. В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому: Х.
Борхес «В кругу развалин».
Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например. Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием. Оно означает, что если в результате какого-либо события от, например, мицелия гриба будет оторвана большая часть, оставшаяся часть в целом будет подобна всему большому организму и будет функционировать. Конечно, это верно лишь для достаточно простых форм жизни.
Загадочный беспорядок: история фракталов и области их применения
Последнее изменение: 2024-02-27 08:19 Бразильское растение араукария показывает фракталы в природе Когда вы думаете о фракталах, вы можете думать о плакатах и футболках Grateful Dead, пульсирующих всеми цветами радуги и закрученными сходствами. Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже.
До 1975 года, фракталы встречались в истории время от времени, но после работы Бенуа Мандельброта, изучение фракталов начало приобретать массовый характер, все больше интегрируясь в мир. Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом. Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже?
Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.
В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую. Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике. Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям. На сегодняшний день накоплено немало научных данных, свидетельствующих о фрактальности структур и функций головного мозга и нервной системы.
Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию! Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта. Тело человека претерпевает изменения подобно нелинейному динамическому фракталу. Развитие человеческого тела. Процесс динамического фрактала Комплексный подход В прошлом веке появилась и закрепилась тенденция на разделение целостной когда-то науки на узкие направления. Научный язык усложнился, учёные всё меньше слышат друг друга, углубляясь в свои специализации.
Однако сейчас уже мы понимаем, что весь мир живой и неживой природы подчиняется одним закономерностям: от развития колоний бактерий до распределения небесных тел в космическом пространстве. Это понимание позволяет нам увидеть более целостную картину мира, открыть взаимосвязь разрозненных, казалось бы объектов, понять причинно-следственные связи. Несомненно комплексным должен быть подход и к здоровью человека. Узкая специализация врачей зачастую не позволяет лечить человека как единый организм. Но человек имеет более сложное строение: то, что видимо глазу — тело и энергетическую конструкцию, которая не видна обычным зрением. Зная об энергетической конструкции , о её взаимосвязи с телом, мы сможем найти целостный подход к профилактике и лечению, раскрыть неиспользуемый потенциал. Простой пример: известный всем эффект «плацебо» основан на силе веры самого человека.
Другими словами, просто переключив внимание с негатива на мысли о выздоровлении, человек изменяет настройки своего организма. Состояние духа больного, его доверие или недоверие врачу, глубина его веры и надежды на исцеление или, наоборот, психическая депрессия, вызванная неосторожными разговорами врачей в присутствии больного о серьезности его болезни, глубоко определяют исход болезни. Психотерапия, состоящая в словесном, вернее, духовном воздействии врача на больного — общепризнанный, часто дающий прекрасные результаты метод лечения многих болезней».
Почему так происходит?
Пена — это множество пузырей. В природе существуют пенопласты из разных материалов. Пена, состоящая из мыльных пленок, подчиняется законам Плато, согласно которым три мыльные пленки соединяются под углом 120 градусов, а четыре грани соединяются в каждой вершине тетраэдра под углом 109,5 градусов. Затем по законам Плато требуется, чтобы пленки были гладкими и непрерывными, а также имели постоянную среднюю кривизну в каждой точке.
Например, пленка может оставаться почти плоской в среднем, имея кривизну в одном направлении например, слева направо , и в то же время искривляться в обратном направлении например сверху вниз. Лорд Кельвин сформулировал задачу упаковки клеток одного объема наиболее эффективным способом в виде пены в 1887 году; его решение — кубическая сота со слабо изогнутыми гранями, удовлетворяющими законам плато. Впоследствии эта структура была адаптирована для внешней стены Пекинского национального плавательного комплекса, построенного для проведения летних Олимпийских игр 2008 года. Природа озабочена экономией.
Пузыри и мыльная пленка состоят из воды и слоя мыльных молекул , и поверхностное натяжение сжимает поверхность жидкости таким образом, чтобы она занимала наименьшую площадь. Поэтому капли дождя при падении принимают форму, близкую к сферической: у сферы наименьшая площадь поверхности по сравнению с другими фигурами того же объема. На восковом листке капли воды сжимаются в маленькие бусинки по той же причине. Поверхностное натяжение объясняет и тот узор, который образуют пузыри или пена.
Пена стремится к такой конструкции, при которой общее поверхностное натяжение будет минимальным, а значит, минимальной должна быть и площадь мыльной мембраны. Но конфигурация стенок пузырей должна быть прочной и с точки зрения механики: натяжение в разных направлениях на «перекрестке» должно быть идеально сбалансировано по тому же принципу нужен баланс при строительстве стен собора. Трехстороннее соединение в пленке из пузырьков и четырехстороннее — в пене — комбинации, которые достигают этого баланса. Читать далее.
Фракталы в природе и в дизайне: сакральная геометрия повсюду
Молния фрактал - 59 фото | нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале |
Фракталы — фигуры в дизайне: сакральные аспекты в геометрии и природа фракталов | Одним из таких исследований является изучение фракталов в природе. |
ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ. | В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. |
Бесконечность фракталов. Как устроен мир вокруг нас
Фракталы — это объекты, для которых характерно самоподобие, то есть точное или частичное совпадение фрагментов различных размеров. С точки зрения математики фракталы являются особенными фигурами, так как обладают дробной размерностью. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия.
Молекулы могут показаться идеальным местом, где можно их найти, поскольку они могут принимать самые разные формы, но среди всех существующих каталогов молекул никогда не было ни одного правильного фрактала тех, которые почти точно совпадают по масштабам. Но теперь ученые из Института Макса Планка и Университета Филиппса обнаружили первый регулярный молекулярный фрактал. Это фермент, используемый видами цианобактерий для производства цитрата, который, как было обнаружено, естественным образом собирается в определенный фрактальный узор, называемый треугольником Серпинского. Развитие фрактальной модели треугольника Серпинского. Имея в руках структуру, стало ясно, как именно этому белку удается собраться во фрактал: обычно при самосборке белков структура очень симметрична: каждая отдельная белковая цепь принимает такое же расположение относительно своих соседей. Такие симметричные взаимодействия всегда приводят к появлению паттернов, которые становятся одинаковыми в больших масштабах. Ключом к пониманию фрактального белка было то, что его сборка нарушала это правило симметрии.
Приходим к выводу, что все рассеянные во Вселенной метагалактики и еще большие системы из-за доминирования в них гравитационного взаимодействия нестационарны. Поскольку же метагалактики могут только расширяться и сжиматься, не достигая устойчивого состояния, то они это циклически и делают. Впрочем, расширение и сжатие метагалактик из-за необратимости этих процессов характеризуются, надо полагать, своего рода остаточной деформацией, которая от цикла к циклу накапливается, пока однажды метагалактики не прерывают свою пульсацию, переходя к бесконечному расширению. Таким образом, при всей своей глобальной стационарности фрактальная Вселенная локально на всем ее протяжении живет бурной жизнью. Составляющие ее метагалактики переживают квазициклические пульсации. Все они имеют свой срок жизни, по истечении которого тают в бесконечном расширении, а их содержимое либо подбирается другими метагалактиками, либо служит материалом для самоорганизации новых. Эволюция и охлаждение В ходе расширения нашей Метагалактики после ее персонального Большого взрыва она эволюционирует в сторону усложнения. На стадии сжатия все структуры, возникшие в ходе расширения, будут разрушены. Согласно концепции Большого взрыва, в ходе расширения наша Метагалактика вот уже около 13,8 млрд лет охлаждается. Это охлаждение означает глобальное в масштабах метагалактики превращение тепла беспорядочного движения частиц в другие формы энергии. Но энергия — это мера количества взаимодействий материи. Поскольку этот глобальный процесс длится и длится уже миллиарды лет, то он и стимулирует возникновение все более сложных материальных структур. Один однонаправленный процесс — глобальная эволюция материи в сторону усложнения — стимулируется другим однонаправленным процессом — глобальным превращением тепла в другие формы энергии. Сказанное может быть отнесено ко всем метагалактикам и еще бoльшим космическим системам: их материальное содержимое эволюционирует в ходе расширения по всем канонам универсальной эволюции, которых мы коснулись в начале статьи. Результаты этих локальных эволюций уничтожаются в ходе сжатия этих космических систем. Переходим ко Вселенной. Если бы она глобально расширялась, то в ней происходила бы глобальная эволюция в сторону усложнения, а если бы сжималась, то происходило бы уничтожение всех структур. Невозможность для фрактальной Вселенной глобального сжатия и расширения означает, что она глобально не эволюционирует. Да и как она могла бы глобально эволюционировать, если во время циклических сжатий и расширений составляющих ее метагалактик все результаты локальных эволюций обнуляются? Все опять и опять повторится сначала Как говорилось выше, жизнь возникает в ходе эволюции везде, где это позволяют условия. В нашей Солнечной системе только восемь планет, и высокоорганизованная жизнь возникла на одной из них. В галактиках намного более разнообразные условия, так что вероятность возникновения жизни в каждой из них много больше. Ну а в метагалактиках вероятность возникновения жизни, надо полагать, и вовсе близка к единице. Возникая на очередной стадии расширения метагалактики с подходящими параметрами, жизнь каждый раз начинает с чистого листа, ничего не зная о своих предшественниках, и бесследно исчезает при ее метагалактики сжатии. В высокотемпературной плазме, в которую превращается содержимое метагалактик при их сжатии, у живой материи нет шансов уцелеть. Так что, вопреки Анри Бергсону и Владимиру Ивановичу Вернадскому, жизнь возникает каждый раз абсолютно заново из неживой материи. Контакты между очагами жизни в разных метагалактиках исключены из-за гигантских расстояний между ними, многократно превосходящих их собственные грандиозные размеры, составляющие миллиарды световых лет. И если даже какому-то очагу жизни довелось возникнуть в метагалактике на такой стадии ее расширения, которая завершится рассеянием содержимого метагалактики в межметагалактическом пространстве, то рано или поздно оно будет подобрано другими метагалактиками — уже существующими или вновь образовавшимися — и опять окажется ввергнутым в мясорубку расширений и сжатий теперь уже своих новых пристанищ. Человеческие индивиды тоже обречены на гибель, что не мешает каждому из нас проживать более или менее полноценную жизнь, наполненную радостями и горестями. Однако имеется кардинальное различие. У индивида есть шанс продолжить себя делами в потомках, сделав вклад в эволюцию своего социума, жизни на Земле и жизни в данной метагалактике. У всего очага жизни в метагалактике ничего такого нет: она жизнь просто захлопывается, не оставляя после себя следа. Человечеству, полагаю, придется смириться с эфемерностью жизни, с отсутствием у нее — по космологическим меркам — прошлого и будущего.
Фракталы - это геометрические фигуры, которые могут быть разделены на несколько частей, каждая из которых является копией всего фрактала. Таким образом, фракталы имеют бесконечно много деталей и масштабируются до любого размера. Одним из наиболее известных и влиятельных исследователей фракталов является Беноит Мандельброт, который в 1975 году ввел термин "фрактал" и разработал концепцию самоподобия. Самым известным примером фракталов в природе является снежинка. Как мы уже узнали, снежинки имеют сложную и красивую геометрию, которая состоит из множества лучей, каждый из которых имеет форму зигзага и петель. Эти лучи также могут быть разделены на множество более мелких лучей, каждый из которых является копией всего луча. Таким образом, снежинка является прекрасным примером фрактала в природе. Также примером фракталов в природе являются деревья. Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева.
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фракталы часто встречаются в природе. Анимация фракталов, изменение фракталов в пространстве, медитация, фрактальная графика. чудо природы, с которым я предлагаю вам познакомиться.