В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов.
Водородная бомба
В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. В процессе получался целый каскад взрывов — обычная взрывчатка запускала атомную бомбу, а атомная бомба поджигала термоядерную. или почему при термоядерном взрыве не начинается самоподдерживающаяся термоядерная реакция в воде и в воздухе В своё время Нильс Бор говорил, что теоретически возможно запустить такой мощности, такого объема термоядерную реакцию. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Испытания советской водородной бомбы, для иллюстрации.
«Отец» водородной бомбы
Однако зачастую в составе термоядерной бомбы есть ядерная бомба, которая и приводит к радиационному загрязнению, хоть и меньшему. У водородной бомбы нет фугасного действия, при взрыве, как у взрывчатки. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. Успешное испытание водородной бомбы РДС‑37, основанной на новом физическом принципе, состоявшееся 22 ноября 1955 года, открыло путь к созданию термоядерного заряда неограниченной мощности — сверхбомбы. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов.
Какая бомба мощнее: ядерная или водородная
Тогда же ему было поручено наблюдение за работами по германскому атомному проекту, для чего он получил доступ к совершенно секретным материалам «Интеллидженс сервис». После нападения Германии на СССР Фукс разделял взгляды о необходимости более активного участия Великобритании в войне, а также о необходимости более широкой помощи воюющему Советскому Союзу. В ноябре 1941 года Фукс посетил советское посольство в Лондоне и предложил предоставить СССР известную ему информацию о работах по созданию ядерного оружия в Великобритании. Его предложение приняли, связь с Фуксом установили через Урсулу Кучинскую. Урсула была профессиональной связисткой высочайшего уровня. Родилась в Германии в 1907 году. В 1930 году в Шанхае была завербована Рихардом Зорге. Он же присвоил Урсуле псевдоним «Соня», который и использовался в 1940-х годах. С ноября 1941 года «Соня» работала только на Клауса Фукса, все остальные задачи с неё были сняты. Поначалу Фукса курировал секретарь советского военного атташе С. Фукс работал исключительно из идейных соображений, на предложение о получении денег от СССР ответил категорическим отказом и попросил более никогда с ним на эту тему не разговаривать.
В декабре 1943 года, по рекомендации Пайерлса и Роберта Оппенгеймера, Фукс с группой других учёных был включён в состав участников американского «Манхэттенского проекта» и прибыл в США. Там в феврале 1944 года с Фуксом была установлена новая связь через связника Гарри Голда, коммуниста из семьи украинских евреев, которому Клаус передавал важную информацию, касающуюся своей части исследовательской работы по «Манхэттенскому проекту». Однако во второй половине 1944 года связь оказалась прервана: Фукс был переведён в Лос-Аламосскую лабораторию со строжайшими мерами секретности. Там он работал в группе Ганса Бете и добился выдающихся научных результатов. Восстановить связь советской разведке удалось только в январе 1945 года, до конца года состоялись три встречи, на которых Фукс передал исключительно важную информацию как о ходе работ, так и о первом испытании атомной бомбы, в котором он лично участвовал. Читайте также В Суоми решили исключить из истории Ленина, чтобы снова стать чьим-то областным центром?
Как за атомной бомбой последовали атомные электростанции, за водородной — вот вот последует управляемый термоядерны синтез, так за кварковой бомбой — какие-нибудь кварковые энергосинтезаторы. Например, протоны и нейтроны. Кварки крошечные — примерно 20 тысяч раз мельче протона. Протоны и нейтроны являются барионами. Электроны — тоже барионы. Все они — вещество, привычная нам материя. А есть еще барионное антивещество — антиматерия. Термоядерный синтез — слияние легких атомных ядер с превращением их в более тяжелые.
Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний. Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально. Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же — это дейтерид легкого изотопа лития. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было. Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы — это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог. Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов — милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности. Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора. Реактор Конструкция будущего реактора в 1950 году виделась его автору довольно простой.
Поэтому возможности проверять любую интересную идею на практике просто не было. Но в итоге Сахарова в приказном порядке включили в рабочую группу. Андрей Сахаров, начало 1950-х. А ведь среди физиков-ядерщиков он был самым молодым и наименее именитым. Здесь и разместили лаборатории.
Академик РАН Михаил Федонкин: водород стал предтечей всего в космосе и на Земле
В историю американцы вошли как первые создатели водородной бомбы чем они, несомненно, очень гордятся , но это была не победа, а проигрыш. Русские оказались умнее. Всё дело в том, Ivy Mike был бесполезен с практической точки зрения. Он весил слишком много по разным источникам, 82 или 62 тонны , а поэтому не годился для транспортировки. СССР произвёл первый термоядерный взрыв 12 августа 1953-го. Мощность была существенно ниже — всего 0,4 мегатонны.
Калужские милиционеры изъяли купальники с символикой сочинской олимпиады 8 июля 2010 Калужская область , 8 июля, 2010, 22:32 — ИА Регнум. Сотрудники центра по борьбе с правонарушениями в сфере потребительского рынка УВД по Калужской области изъяли купальники с символикой сочинской олимпиады на территории калужского рынка товаров.
Современность и недалекое прошлое Официально считается, что по сей день ни одна кобальтовая бомба не была ни сконструирована, ни испытана. Единственная оговорка в данном случае допускается по поводу британских испытаний на полигоне Маралинга в 1957 году: Тогда была проведена серия из 4 испытаний , в ходе которых изотопы кобальта-59 использовались в качестве трассировочных элементов для оценки скорости протекания процессов. Оказалось, что кобальт-59 подхватывает нейтроны гораздо слабее, чем предполагалось, и кобальт-60 образуется в незначительных количествах. Аналогичные косвенные данные были получены в СССР в рамках проекта « Тайга », когда в Чердынском районе Пермской области в марте 1971 года было подорвано три подземных ядерных заряда: В результате испытаний произошла сильная нейтронная активация окружающих минералов, и на месте взрывов образовались не только плутоний и америций, но и кобальт-60 а также другие сравнительно легкие изотопы европия и ниобия. Заметные количества кобальта-60 были объяснены тем, что в породах на месте испытания содержится значительный объем кобальта, а также этот металл входил в состав труб, проложенных на месте испытания. В дальнейшем ядерные испытания там не проводились, поскольку повышение радиационного фона фиксировалось даже в Москве. Что касается кобальта-60, его количество и в этом случае оказалось невелико, за пределы региона он почти не просочился. Тем не менее, в наше время до предела наэлектризованной дипломатии взаимных подозрений то и дело звучат обвинения в возможной подготовке кобальтовой бомбы или аналогичных зарядов. Один из наиболее известных случаев произошел в 2015 году, когда возникла утечка презентации о «Многоцелевой океанической системе Статус-6», позже получившей название « Посейдон ». Зона поражения и характер загрязнения, которые может давать «Посейдон» позволяют предположить, что этот малозаметный «подводный дрон» не только может вызывать цунами, обрушивающееся на прибрежный город в месте подрыва, но и содержать элементы, гарантирующие долговременное загрязнение по тому же принципу, что и кобальт-60. На сайте «Naked Science» есть очень подробная и обоснованная статья , поясняющая, почему вооружение «Посейдона» кобальтовыми зарядами — маловероятный сценарий. Если коротко, длительное заражение действительно не имеет смысла, а теоретически возможный подрыв такой торпеды на глубине будет иметь катастрофические последствия. Правда, не исключается, что «Посейдон» можно использовать в качестве натриевой бомбы, начинив раствором с обычным натрием-23, который при поглощении нейтронов превращается в радиоактивный натрий-24.
В обычном водороде, который есть у нас на Земле, на каждые 7-8 тысяч атомов «обычного» вещества попадается «необычный»: у него, помимо протона, есть еще и нейтрон. Такой изотоп водорода назвали «дейтерий». Но и тут есть небольшой нюанс: чтобы реакция началась, дейтерий должен прореагировать еще с одним изотопом водорода — тритием, у которого уже два нейтрона. Проблема в том, что на Земле его не достать, да и разрушается он очень быстро — приблизительно за 25 лет. Вопрос: где достать тритий? Из-за того, что он радиоактивен, тритий используется как источник питания Из-за того, что он радиоактивен, тритий используется как источник питания Обойти это препятствие получилось с помощью вещества под названием дейтерид лития-6. С одной стороны, это твердое вещество, и его удобно хранить, в отличие от газообразного дейтерия, а с другой — литий, если его бомбардировать нейтронами, распадается на нужный нам тритий, ненужный гелий и нейтрон. Теперь поговорим об устройстве бомбы. Она представляет собой «слоеный пирог». Снаружи у неё плутониевый заряд. Его задача — обжать внутреннюю часть бомбы, где хранится термоядерное горючее, чтобы создать давление и высокую температуру, и послужить источником нейтронов для получения трития. Эта внутренняя камера имеет в сердцевине еще один кусочек плутония, который начинает сжимать его изнутри наружу. Зажатый между двумя атомными зарядами, как кусок железа между молотом и наковальней, горючее начинает термоядерную реакцию. A - бомба до взрыва; B - подрывается плутониевый заряд; C - жесткое рентгеновское излучение проникает внутрь второй ступени дейтерида лития ; D - стрежень из плутония в самом центре второй ступени также начинает расщепляться; E - начинается термоядерная реакция. Такой пирог можно покрывать новыми слоями, которые будут обжимать внутренности всё сильнее и сильнее, обеспечивая продолжение реакции внутри бомбы. Так что теоретически можно создать термоядерную бомбу с какой-угодно мощностью — здесь нет «потолка». Доля атомного заряда в итоговой мощности невелика, ведь он служит только для активации процесса. Но сколько же термоядерного горючего закладывается в бомбу?
ВОДОРОДНАЯ БОМБА
Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления. Общее описание Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого.
Поделиться 50 лет назад была испытана водородная бомба 12 августа 1953 года на полигоне в Семипалатинске была испытана первая в мире водородная бомба. Это было четвертое по счету советское испытание ядерного оружия. После испытания Курчатов с глубоким поклоном обратился к 32-летнему Сахарову: "Тебе, спасителю России, спасибо! Термоядерная бомба построена на другом принципе: энергия выделяется при слиянии легких изотопов водорода , дейтерия и трития. Материалы на основе легких элементов не имеют критической массы, что было большой конструкционной сложностью в атомной бомбе.
И если для получения энергии в реакторе, атом обуздать еще не удалось, то с задачей создания оружия, основанного на термоядерном синтезе, человек справился успешно еще в начале 50х. Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте.
Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода — точно такой же процесс происходит на Солнце. Чем водородная бомба отличается от атомной Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.
Вдруг когда-нибудь получится отлавливать и накапливать кварки, потребные для изготовления кварковой бомбы. Военные на выдумки горазды. С другой стороны, новый источник энергии открывает и мирные перспективы. Как за атомной бомбой последовали атомные электростанции, за водородной — вот вот последует управляемый термоядерны синтез, так за кварковой бомбой — какие-нибудь кварковые энергосинтезаторы. Например, протоны и нейтроны. Кварки крошечные — примерно 20 тысяч раз мельче протона. Протоны и нейтроны являются барионами. Электроны — тоже барионы.
Водородная и атомная бомбы: сравнительные характеристики
Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой. Термоядерное оружие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития.
Царь-бомба АН602. Рассекреченные кадры взрыва водородной бомбы мощностью 50 млн тонн
В 1949 году физик Андрей Сахаров предложил основной принцип советской водородной бомбы — слойку. На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. 30 октября 1961 года в СССР прошли испытания самой мощной в мире термоядерной бомбы (устаревшее название – водородная бомба), принцип действия которой основан. Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. В 1945—1946 годах Фукс участвовал в теоретических работах по разработке водородной бомбы, в анализе результатов применения атомных бомб в Хиросиме и Нагасаки, в разработке программы исследований со взрывами атомных бомб на атолле Бикини.