Личный сайт Рогова Андрея: информатика, программирование и робототехника. @kegechat Связаться с админом и записаться на занятия - @marat_ii. В данной статье публикую полный разбор досрочного апрельского варианта по информатике ЕГЭ 2024 года. Всего 27 заданий. Задания графически и наглядно разобраны, приведены коды программ. Большая база заданий ЕГЭ по Информатике, объяснения решений и правильные ответы. В данной статье публикую полный разбор досрочного апрельского варианта по информатике ЕГЭ 2024 года. Всего 27 заданий. Задания графически и наглядно разобраны, приведены коды программ.
Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024
Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку. Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000. В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе. Скачать Вариант 2. В текстовом файле записан набор натуральных чисел, не превышающих 109. Гарантируется, что все числа различны.
Чтобы вложенные контейнеры было лучше видно, их цвета при вложении обязательно должны чередоваться, то есть нельзя вкладывать контейнер в контейнер такого же цвета. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым.
Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней.
У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Выполните следующие задания.
Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку.
Задания 20, 21 ЕГЭ по информатике: Аналитическое решение демоварианта
#разбор заданий егэ по информатике 2022. В ЕГЭ по информатике 27 заданий разного уровня: и ряд из них требует особого подхода. Задания по информатике.
Досрочный период КЕГЭ по информатике 9 апреля 2024
Решение 26 задания егэ информатика. | 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). |
Задание 26 ЕГЭ 2024 по информатике: теория и практика с ответами в форме тестов | Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика). |
ВСЕ ЗАДАЧИ 26 с официальных ЕГЭ | Информатика ЕГЭ 2023 | Умскул - YouTube | На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. |
Задание КИМ 26. Обработка данных через сортировку. Источник: Поляков
Массив-вектор объявляем глобальной переменной. Основной блок программы: a. Берем по три элемента из массива-вектора, сдвигаясь каждый раз всего на один элемент. Определяем количество трехзначных чисел среди этой тройки и сумму элементов всех трех чисел. Если количество трехзначных чисел в тройке ровно 2, а сумма элементов тройки не превышает максимального значения — подсчитываем количество таких троек увеличиваем счетчик троек чисел на 1.
Входные данные. В первой строке входного файла находятся два числа: S — размер свободного места на диске натуральное число, не превышающее 10 000 и N — количество пользователей натуральное число, не превышающее 1000.
В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Заметим, что от остальных островов отходит по три моста. Далее по таблице определяем, с каким номером у О1 и О6 общая связь смотрим на строки О1 и О6 и видим, что есть мост между О1 и О5 — и мост между О6 и О5. Далее находим длину моста между Ж и Е то есть между О5 и О8. Искомая длина — 17. Ответ: 17 Задание 5 10270 Артём и Саша гуляют по парку аттракционов. На рисунке представлена схема проходов между аттракционами.
В таблице звездочкой обозначено наличие прохода от одного аттракциона к другому, отсутствие звездочки означает, что такого прохода нет. Каждому аттракциону на схеме соответсвует его номер в таблице, но неизвестно, какой именно. Определите, какие номера в таблице могут соответствовать аттракционам В и З на схеме. Заметим, что аттракционы Д и Б уникальны в том смысле, что из них выходит уникальное число проходов: из Д — четыре, от Б — два. Далее заметим, что у нас два аттракциона, из которых выходят два прохода — Е и В. В ответ запишем номера аттракционов в порядке возрастания: 47. Ответ: 47 Задание 6 10278 На рисунке представлена схема дорог около города Утьского района. В реестре учета дорог этого города содержатся сведения об их длине.
Отсутствие значения означает, что такой дороги нет. Обозначения пунктов в реестре и на схеме не совпадают. Определите, какова длина пути из пункта Б в пункт Г.
Укажите минимальное значение S, когда такая ситуация возможна. Задание 2. Для указанного значения S опишите выигрышную стратегию Пети. Задание 3.
Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Запишем условие более понятным языком. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше.
Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Решение задания 1а.
Вы точно человек?
Отмена. Воспроизвести. Информатика ЕГЭ Умскул. Задания 26, 27 позволяют набрать по 2 первичных балла каждый. Урок по теме Как решать задание ЕГЭ. Теоретические материалы и задания Единый государственный экзамен, Информатика. ЯКласс — онлайн-школа нового поколения. Решение задачи 26 из ЕГЭ по информатике и ИКТ. Это разбор заданий тренировочной работы №2 (15.12.2022) от Статград.
Досрочный период КЕГЭ по информатике 9 апреля 2024
Задание 3. Демоверсия ЕГЭ 2018 информатика (ФИПИ): На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах). Задание номер 26 ЕГЭ по информатике. Сколько баллов? Как делать задание? Теория. Шпаргалка. Практика. Разбор. Решение. Критерии оценивания. Баллы. @kegechat Связаться с админом и записаться на занятия - @marat_ii.
2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia
С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st - это список. В st[0] - будет подстрока с первым числом, в st[1] со вторым.
Переменная s - это размер свободного пространства на диске, n - это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a.
В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b.
В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b.
Таким образом, сможем найти максимальное количество. Чтобы найти максимальный элемент при максимальном количестве, удаляем из списка b последний самый большой элемент.
Достаточно указать одно значение S и описать для него выигрышную стратегию. Задание 3 Возможное значение S: 19. После первого хода Пети возможны позиции: 7, 19 , 18, 19 , 6, 20 , 6, 57. В позициях 18, 19 и 6, 57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7, 19 и 6, 20 Ваня может получить позицию 7, 20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом.
В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня выделены жирным шрифтом. На рисунке это же дерево изображено в графическом виде оба способа изображения дерева допустимы. Примечание для эксперта. Дерево всех партий может быть также изображено в виде ориентированного графа — так, как показано на рисунке, или другим способом. Важно, чтобы множество полных путей в графе находилось во взаимно однозначном соответствии со множеством партий, возможных при описанной в решении стратегии. Дерево всех партий, возможных при Ваниной стратегии. Ходы Пети показаны пунктиром; ходы Вани — сплошными линиями. Прямоугольником обозначены позиции, в которых партия заканчивается.
Не является ошибкой указание только одного заключительного хода выигрывающего игрока в ситуации, когда у него есть более одного выигрышного хода Указания по оцениванию Баллы В задаче требуется выполнить три задания. Их трудность возрастает. Количество баллов в целом соответствует количеству выполненных заданий подробнее см.
Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней.
Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28. Если при этом в куче осталось не более 44 камней, то победителем считается игрок, сделавший последний ход.
В противном случае победителем становится его противник. Например, если в куче было 23 камня, и Паша удвоит количество камней в куче, то игра закончится и победителем будет Валя. Задание 1 а При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши. Опишите выигрышные стратегии для этих случаев.
Опишите соответствующие выигрышные стратегии. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции. Побеждает тот игрок, который называет последнюю букву любого слова из набора. Петя ходит первым.
Определить выигрышную стратегию. В первом слове 99 букв, во втором 164. Задание 2 Необходимо поменять две буквы местами из набора пункта 1А в слове с наименьшей длинной так, чтобы выигрышная стратегия была у другого игрока. Объяснить выигрышную стратегию. У кого из игроков есть выигрышная стратегия?
Обосновать ответ и написать дерево всех возможных партий для выигрышной стратегии. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.
Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Для указанного значения S опишите выигрышную стратегию Вани. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход.
Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня. Эта позиция разобрана в п.
В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет. Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня. Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом.
Ситуация, когда в куче 13 камней, разобрана в п.
Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар. Работа со списком. Основы программирования. Входные данные задания 26 ЕГЭ В первой строке входного файла находится одно число: N — количество занятых мест натуральное число, не превышающее 10000. В следующих N строках находятся пары чисел: ряд и место выкупленного билета числа не превышают 100000. В ответе запишите два целых числа: сначала максимальный номер ряда, где нашлись обозначенные в задаче места и минимальный номер места. Пример входного файла: Пример входных данных к заданию 26 ЕГЭ по информатике Для данного примера ответом будет являться пара чисел 60 и 23.
Решение Согласно условию задачи нам следует найти самый большой номер ряда, в котором найдется 2 соседних незанятых места, что слева и справа от них будут 2 занятых места, что соответствует схеме занято — свободно — свободно — занято. Если мы нашли такой номер ряда, и оказалось, что таких схем в нем несколько, то нужно выбрать минимальный номер свободного места. Алгоритм решения задачи Читаем данные из файла в список списков. В результате у нас будет список, каждый элемент которого будет являться списком из 2-х чисел. Поменяем знак второго элемента в каждом вложенном списке на противоположный. Сделаем сортировку списка с помощью sort. Это облегчит решение, так как теперь нужно будет искать максимальный ряд и максимальное место. Идем по внешнему списку и проверяем: если ряд совпал и разность по местам равна 3, что соответствует вышеописанной схеме «занято» — «свободно» — «свободно» — «занято», сохраняем ряд и восстанавливаем место берем со знаком минус и добавляем 1, так как нужно получить минимальный номер свободного места. Обработка целочисленной информации с использованием сортировки, В — 2 балла Е26.
В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки — подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т. Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее … Е26.
ЕГЭ-2020: 23-е задание по информатике стало мемом, а 17-е по математике – песней
Задание 26 | ЕГЭ по информатике | ДЕМО-2024 — ЭкзаменТВ | Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. |
Задание 26 егэ информатика перестановка букв. | Разбор задания 26 из ЕГЭ по информатике с помощью Python. |
ЕГЭ-2020: 23-е задание по информатике стало мемом, а 17-е по математике – песней | | Разбор всей демоверсии ЕГЭ по информатике 2024 в плейлисте. |
Cara Memilih Situs Toto Togel Terbaik dan Terpercaya
- Задачи для тренировки
- Пример решения задачи в случае увеличения камней в куче двумя способами "+1" и "*2"
- Слайд 3: 25. Общий подход
- Задание №26 в Excel
- Задание 26 ЕГЭ по информатике 2024 - теория и практика :: Бингоскул
Формулировка задания №26 ЕГЭ 2024 из демоверсии ФИПИ
- Егэ информатика 26 задание решение
- Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация
- Rokokbet - Agen Situs Toto Macau Terpercaya Hadiah Togel Terbesar 2024
- Задание 20, 21 ЕГЭ по информатике - решение, разбор задач - Издательство Легион
- Разбор 26 задания ЕГЭ 2017
Задание №26 в Excel
Теперь выделяем ячейки сверху мышкой, а справа в нижней части программы будет показываться сумма выделенных ячеек. Мы должны выделить максимальное количество ячеек, но чтобы сумма не превышала число 8200. Получается максимальное количество файлов, которое можно сохранить, равно 568. Найдём максимальный размер файла при максимальном количестве файлов. Если покрутим таблицу вниз, то найдём такой файл размером 50. Это и будет наибольший файл при максимальном количестве файлов. Ответ получается 568 50. Второй способ с помощью Python.
С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st - это список. В st[0] - будет подстрока с первым числом, в st[1] со вторым. Переменная s - это размер свободного пространства на диске, n - это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a.
Действительно, если Паша первым ходом удваивает количество камней, то в куче становится 32 камня, и игра сразу заканчивается выигрышем Вали. Если Паша добавляет один камень, то в куче становится 17 камней. Как мы уже знаем, в этой позиции игрок, который должен ходить то есть Валя , выигрывает.
Во всех случаях выигрыш достигается тем, что при своём ходе игрок, имеющий выигрышную стратегию, должен добавить в кучу один камень. Можно нарисовать деревья всех возможных партий для указанных значений S. Она состоит в том, чтобы удвоить количество камней в куче и получить кучу, в которой будет соответственно 18 или 16 камней.
В обоих случаях игрок, который будет делать ход теперь это Валя , проигрывает смотрите пункт 1б. После первого хода Паши в куче может стать либо 8, либо 14 камней. В обеих этих позициях выигрывает игрок, который будет делать ход теперь это Валя.
В таблице изображено дерево возможных партий при описанной стратегии Вали. Заключительные позиции в них выигрывает Валя подчёркнуты.
Массив-вектор объявляем глобальной переменной. Основной блок программы: a. Берем по три элемента из массива-вектора, сдвигаясь каждый раз всего на один элемент. Определяем количество трехзначных чисел среди этой тройки и сумму элементов всех трех чисел. Если количество трехзначных чисел в тройке ровно 2, а сумма элементов тройки не превышает максимального значения — подсчитываем количество таких троек увеличиваем счетчик троек чисел на 1.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей , чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Входные данные находятся в файле.
Пример взят с сайта РешуЕГЭ.
Всё, что нужно знать о ЕГЭ по информатике
Ответ: 1952 1080 Задание 19. Выигрышная стратегия Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч два камня или увеличить количество камней в куче в два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 74. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 74 или больше камней. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети.
Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Опишите выигрышную стратегию Вани. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии в виде рисунка или таблицы. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Разбор 27 задания демоверсии 2018 года ФИПИ : На вход программы поступает последовательность из N целых положительных чисел, все числа в последовательности различны. Рассматриваются все пары различных элементов последовательности элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен. Необходимо определить количество пар, для которых произведение элементов делится на 26. В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000. В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов кратно 26.
Таблица перевода первичного балла в тестовый неравномерна. Чем больше ваш итоговый балл, тем меньше будет давать и первичный: например, 2 первичных балла соответствуют 14 тестовым, начиная с нуля, а 26—28 первичных дают в итоге 93—98 баллов соответственно. Начинать с самых простых, так как по тестовому весу они не будут сильно уступать сложным заданиям. Иногда выгоднее решить две простые задачи, чем решать одну сложную. Главное, решить их правильно. Так как вы часто используете различное программное обеспечение, то и ответ является результатом работы программ. Необходимо постоянно проверять на промежуточных результатах правильность работы вашего алгоритма или другой программы. Цена ошибки во время выполнения тестовых заданий выше — потеря каждого первичного балла чревата тем, что вы не пройдёте по конкурсу, ведь 3—4 итоговых балла за ЕГЭ при высокой конкуренции на IT-специальности могут стать решающими. Компьютер доступен на протяжении всего экзамена, и одно и то же задание можно решить разными способами и сравнить полученные ответы. Именно эти задачи, согласно анализу результатов прошлых лет, особенно сложны.
После хода Вани может возникнуть одна из 4-х позиций: 8,20 , 21,20 , 7,21 , 7,60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. В качестве ответа можно представить значение S и дерево всех возможных партий при выбранной стратегии Пети см. Решение задания 3. Необходимо найти S, причем обязательно учитывать условия: - у Вани есть выигрышная стратегия первым или вторым ходом при любой игре Пети; - первый ход не гарантированно выигрышный. То есть, первая стратегия может быть выигрышная, может нет, но вторая — однозначно должна быть выигрышной. S, при котором гарантированно можно выиграть вторым ходом — 20, позиция 6,20 см. После первого хода Пети возможны позиции: 7,19 , 18,19 , 6,20 , 6,57. В позициях 18,19 и 6,57 Ваня может выиграть первым ходом, утроив количество камней во второй куче. Из позиций 7,19 и 6,20 Ваня может получить позицию 7,20. Эта позиция разобрана в п. Игрок, который её получил теперь это Ваня , выигрывает своим вторым ходом. Далее должо быть представлено дерево всех возможных решений. Также дерево решений может быть представленно в виде таблицы: Положение после очередных ходов 1-й ход Пети все возможные ходы 1-й ход Вани указаны только ходы по стратегии 2-й ход Пети все возможные ходы 2-й ход Вани указаны только ходы по стратегии 6, 19.