Министр обороны России Сергей Шойгу поручил как можно скорее начать серийное производство перспективных медицинских роботов для армии страны, сообщили в пресс-службе ведомства. Об этом говорилось в ходе круглого стола "Робототехника в медицине", который прошел на портале 13 декабря.
Хирурги Благовещенска провели первую операцию с роботом-ассистентом
Хотя внедрение этой технологии в медицину происходит медленнее по сравнению с другими отраслями, воздействие может быть огромным: робототехника в медицине может помочь уменьшить человеческие ошибки, сократить время восстановления и сократить пребывание в больнице, в конечном счете, повысить качество жизни пациентов. Первое медицинское роботизированное приложение появилось в 1985 году. Тогда роботизированная хирургическая рука помогала сделать биопсию в нейрохирургиии. Пятнадцать лет спустя появилась первая полностью одобренная FDA система известная как хирургическая система da Vinci для лапароскопической хирургии. Система позволяла хирургам контролировать хирургические манипуляции косвенно через консоль. Сегодня компании используют достижения в области данной технологии для разработки новых роботизированных приложений медицины будущего, в том числе, связанных с бионикой, обнаружением заболеваний и реабилитацией. Например, Компания Neuralink Элона Маска, работает над разработкой передовых технологий для протезирования конечностей. Попытаемся выяснить, соответствует ли реальность этим большим амбициям, и когда медицинская робототехника начнет выходить в мейнстрим. Технологии бионики: от бионических частей тела до микророботов, в форме таблеток, которые можно проглотить, роботы приходят в нашу жизнь и могут изменить привычную медицину. Они позволяют хирургам выполнять операции с помощью консоли, которая управляет хирургическими руками, камерами и другими инструментами, непосредственно осуществляющими процедуру. Применение систем RAS приводит к уменьшению размеров разрезов, снижению вероятности кровопотери и инфекций, уменьшению боли и осложнений у пациентов.
Учитывая эти преимущества, хирургические роботизированные системы широко используются в последнее десятилетие. Примечательно, что один из самых популярных роботизированных инструментов также является одним из старейших: хирургическая система da Vinci. Тем не менее, появляется все большее количество конкурентов на сцене. Робот замены колена Мако. Источник: Новости MedCity Система Мако может создать 3D модель сустава на основе компьютерной томографии, что позволяет хирургу заранее планировать работу для каждого отдельного пациента. Модель загружается в систему и при необходимости корректируется. После того, роботизированная рука устанавливает угол и плоскость хирургических пил и предотвращает слишком глубокие разрезы. В 2018 году система Mako осуществила почти 80 000 операций по замене колена и тазобедренного сустава в более чем 650 локализаций. А некоторые из самых крупных компаний в отрасли работают над созданием более эффективных и меньших устройств для оказания помощи хирургам и улучшения результатов, при этом они являются более эффективными с точки зрения затрат. Для справки: устройство Мако стоит приблизительно 1 млн.
Несмотря на то, что за последние несколько лет компания сделала значительные инвестиции в медицинскую робототехнику, ортопедия является основным направлением деятельности. Его небольшой размер и небольшая стоимость может быть преимуществом на рынке. Количество операции на колене и тазобедренном суставе растут и представляют собой один из самых перспективных рынков для робототехники — особенно для небольших, менее дорогостоящих роботов, с помощью которых можно выполнять амбулаторные операции. Этот вариант является более рентабельными, чем пребывание в больнице. Технология позволяет врачам разработать план для каждой операции по протезированию от предоперационного планирования до послеоперационной оценки. В настоящее время эта технология используется в 500 учреждениях. NAVIO robotics-assisted surgical system. Эта система предназначена для хирургов для большей точности манипуляций во время операции без необходимости предоперационной визуализации, такой как компьютерная томография. Первая полная удаленная операция была проведена в 2001 году, когда хирург из Нью-Йорка использовал роботизированную хирургическую систему Zeus для удалённого удаления желчного пузыря пациента во Франции. С тех пор многие компании открыли для себя направление «телехирургия», но эта технология в настоящий момент не развивается.
Одним из примеров здесь является Corindus, компания по робототехнике для коронарных вмешательств, которая подняла инвестиционный раунд серии A за 25 миллионов долларов в 2018 году. С помощью системы Corindus CorPath врачи в Индии смогли поместить стент в заблокированную артерию для пяти пациентов, находящихся друг от друга на расстоянии 20 миль. Возможность дистанционной телехирургии в настоящее время изучается клиникой Майо, хотя технология остается в стадии зародыша.
Печать непосредственно на ране представляется наиболее быстрым и доступным способом восстановить ткани пациента. До сих пор для этого ткани для восстановления выращивались отдельно в стерильных условиях, что требовало времени и затрат.
Роботизированный комплекс сразу в процессе операции сканировал рану, создавал её 3D-модель и корректировал заполнение с учётом перемещений тела, например, в процессе дыхания. Ранее комплекс был испытан на животных и показал свою состоятельность. Первая операция на человеке была проведена в Главном Военном Клиническом Госпитале им. Живые клетки для «чернил» принтера брались из костного мозга пациента.
Другая важная функция аппарата — возможность идентифицировать клетки при помощи встроенного механизма, основанного на их уникальных электрических свойствах, сообщает Phys. Вдобавок, микроробот обладает продвинутой способностью идентифицировать и захватывать отдельные клетки без необходимости в маркировке, для локального тестирования или транспортировки к внешнему интрументу», — сказал профессор Гилад Йоссифсон. Как пояснили ученые, гибридный двигательный механизм обладает особой важностью для физиологических сред, таких, которые встречаются в жидкой биопсии. Прежние микророботы с электрической системой ориентирования были малоэффективны в определенных условиях, для которых характерна относительно высокая электрическая проводимость. Вот где на помощь приходит вспомогательный магнитный механизм.
Экзоскелеты используются в реабилитации после травм спинного мозга и инсультов3. Например, датчики экзоскелета Hybrid Assistive Limb HAL , расположенные на коже, регистрируют небольшие электрические сигналы в теле пациента, и костюм реагирует движением в суставе3. Роботизированные протезы Протезы с роботизированными возможностями разработаны для восстановления функций утраченных конечностей. Они предназначены для постоянного ношения людьми с ограниченной мобильностью, без рук, ног, кистей3.
Нейромышечно-скелетные протезы крепятся к кости и управляются с помощью двунаправленных интерфейсов, подключенных к нервно-мышечной системе человека с помощью электродов, имплантированных в нервы и мышцы8. В итоге роботизированная конечность приводится в движение силой мысли. Роботы-ассистенты и роботы консультанты В среднем врач тратит примерно 9 часов в неделю на административные задачи, а это целый рабочий день9. Первые синхронизируются с МИС и загружают туда данные, берут на себя бумажную работу, обзванивают пациентов, позволяя клинике сократить расходы на информирование и повысить лояльность клиентов.
Вторые помогают пациентам записаться на приём и занимаются их маршрутизацией в холле клиники без привлечения сотрудников. Такие человекоподобные роботы умеют общаться, отвечать на вопросы, способны распознавать лица и эмоции людей10. Роботы-компаньоны Роботы способны играть роль компаньонов и даже питомцев. Аналитики предполагают, что в будущем роботы для эмоциональной поддержки будут востребованы11.
В больничных условиях роботы оказывают пациентам — особенно пожилым людям и детям — помощь, подбадривая и демонстрируя, как выполнять определенные двигательные действия3, например сесть и встать с постели. Они напоминают о необходимости принять лекарства или разговаривают с теми, кто лишен регулярного человеческого контакта что особенно актуально в контексте нехватки медсестёр и сиделок 4. Очень часто такие роботы похожи на людей или животных. Его задача — вызывать положительный эмоциональный отклик у пациентов и ускорять выздоровление4.
Сейчас роботов для ухода и поддержки очень мало, в первую очередь из-за их высокой стоимости. Однако ожидается, что в течение следующего десятилетия их количество значительно возрастет4. Роботы-тренажеры Нужны для совершенствования профессиональных навыков и используются в обучении врачей и медперсонала12. Помогают отработать распространенные клинические сценарии либо выступают в качестве симуляторов пациентов робопациенты, роботы-манекены , имитируя человека целиком или только относящуюся к теме обучения часть.
Например, это может быть симулятор роженицы или недоношенного ребенка. Иногда такие роботы ведут себя как реальные больные: они дышат, потеют, кровоточат, двигают конечностями, а их зрачки реагируют на свет. Роботы в доставке Робота-тележку для обхода больных или робота-курьера можно назвать одним из подвидов роботов-медсестёр. Они используются для доставки лекарств, лабораторных образцов, посуды, еды, для сортировки препаратов, облегчая работу медицинского персонала в больницах и домах престарелых4.
Такие роботы способны ориентироваться на местности с помощью встроенной карты, множества бортовых датчиков и компьютерного зрения. Wi-Fi обеспечивает связь с лифтами, автоматическими дверями и пожарной сигнализацией13.
В России появилось роботизированное производство медицинских имплантов
Машина получит более низкий силуэт по сравнению с базовым образцом, который ранее был представлен офицерам Минобороны РФ. Ещё одна особенность наземного беспилотника — использование электрического двигателя, что позволяет значительно сократить заметность «Челнока» в тепловизионном спектре. По мнению экспертов, роботизированные платформы крайне полезны для проделывания проходов на особо опасных участках минных полей. В программу соревнований была включена кибатлетика — уникальная дисциплина для людей с инвалидностью.
Один из примеров: применение хирургического робота на предстательной железе позволило совершить революцию в выполнении сложных операций. Главным преимуществом медицинской робототехники являются высокая точность при диагностике и проведении операций, а также существенное снижение рисков нанесения вреда жизни и здоровью человека. В России за последние 5 лет выполнено более 20 тысяч робот-ассистированных хирургических операций.
Порядка 50 отечественных компаний ведут разработки в сфере медицинской робототехники, создают решения, которые уже успешно внедряются в РФ и за рубежом. Активное развитие получили хирургические роботы, бионические экзопротезы, экзоскелеты, которые помогают людям получить принципиально новое качество жизни, абсолютно новый уровень медпомощи, позволяющий делать операции, которые ранее не были доступны или были доступны, но с гораздо большими потерями и последствиями, — отметил в приветственном слове генеральный директор ООО «ИнноДрайв» Максим Гурбашков. Председатель правления Консорциума робототехники и систем интеллектуального управления, исполнительный директор АО «НПО «Андроидная техника» Евгений Дудоров выступил с докладом «Роль и сферы применения роботов в современной медицине». В России есть минимум три проекта, в рамках которых разрабатываются робототехнические устройства для брахитерапии. Есть много аппаратов для протезирования — таких проектов, которые нам известны, пять—шесть. Эта тематика активно развивается во всем мире и, конечно, в России.
Активно разрабатываются роботы для ассистирования и реабилитации, экзоскелеты. Большое количество стартапов работают над роботами для медицинских исследований. Это роботы-узисты, роботы для взятия проб, для взятия крови из вены, роботы, которые помогают делать КТ или МРТ. И таких решений становится все больше, — рассказал Евгений Дудоров. У «НПО «Андроидная техника» есть несколько перспективных разработок в этой сфере. Так, робот MedBot M-201 способен наладить онлайн-общение между пациентом и врачом, а также передавать информацию о состоянии пациента в режиме реального времени.
Есть робот и для дезинфекции помещений посредством ультрафиолетовых облучателей закрытого, открытого и гибридного типов. Особый интерес представляет роботизированный комплекс для постинсультной и посттравматической реабилитации детей с синдромом ДЦП. Если кратко, то с помощью этого устройства человек может подавать импульсы-сигналы, а устройство будет выполнять нужные движения. Таким образом желаемое действие преобразуется в реальное. Идет биологически обратная связь и происходит восстановление когнитивно-двигательных функций, — объяснил глава Консорциума.
Российские учреждения здравоохранения уже имеют 30 таких роботов. С учетом увеличивающейся потребности в высокотехнологичной медицинской помощи, траты уже достигли 100 миллионов долларов и только увеличиваются. Поэтому Минздрав поставил задачу создать российский аналог, не уступающий в функциональности «американцу».
Евдокимова, врачи которого провели больше тысячи операций с помощью da Vinci и хорошо узнали все плюсы и минусы зарубежного робота. Полученное российское устройство превзошло все ожидания и оказалось лучше своего американского «коллеги». Во-первых, кардинально отличается вес роботов: манипулятор da Vinci имеет массу более тонны, тогда как «россиянин» — порядка 20 кг. Компактность комплекса обеспечит его мобильность в перемещениях между клиниками, где намечаются операции. Во-вторых, точность вмешательства российской разработки составляет 5 микрон против 500 у da Vinci. Из-за этого отечественное устройство можно использовать при оперировании детей, а также не ограничиваться одной лишь урологией. Роботизированная помощь и повышенная точность требуется и кардио-, и нейрохирургам. Манипулятор отличается адаптивностью и способен использовать любые инструменты, необходимые в конкретном случае.
Она разработала пневматический коленный модуль Steplife P5, который позволяет человеку не только ходить, но и заниматься спортом — бегать или ездить на велосипеде. Также у компании есть разработки с роботизированным коленным модулем. За счет микроконтроллера, который рассчитывает параметры движения, и встроенных приводов, достигается очень высокий уровень комфорта при ходьбе. С таким протезом пациент может восстановить привычную походку, совершать действия, требующие сложной координации движений — например, танцевать. Современные технологии позволяют кастомизировать протезы в очень широком диапазоне, что позволит подобрать нужное устройство для людей с самыми разными по тяжести ампутациями.
Например, если культя длинная и коленный модуль должен быть очень компактным, или же наоборот — короткая и нужны более сложные крепления. Для таких устройств не станет проблемой даже отсутствие мышц, — ведь аппарат работает за счет приводов, а не мускульной силы. С верхними конечностями работает компания «Моторика». Она также производит решения на стыке медицины и робототехники — тяговые и бионические протезы рук. Благодаря комплексному подходу пациенты не просто получают устройство, а проходят реабилитацию, учатся пользоваться новой рукой.
Компания производит семь видов тяговых и бионических протезов кисти, предплечья и плеча. Каждое устройство уникально и производится под конкретный тип травмы пользователя. При этом так же, как и в предыдущем кейсе, протезисты работают со сложными случаями — как с врожденными особенностями, так и с ампутациями. А на все версии протезов устанавливаются запатентованные сенсорные напальчники. Они позволяют значительно повысить качество жизни и облегчить выполнение привычных ежедневных операций, таких как использование смартфонов, планшетов и других touch-поверхностей.
При этом «Моторика» продолжает совершенствовать технологии — на ВЭФ представила протез руки с обратной связью. Он позволяет пациенту чувствовать размеры предметов, их мягкость и температуру, устройство также помогает бороться с фантомными болями. Говоря о реабилитации, стоит также отметить разработку резидента фонда «Сколково» — компании «Экзоскелет». Технология учит их заново ходить.
Медицина будущего: мы станем роботами?
Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами. В ответ на это российский производитель роботов Promobot создал прототип робота-врача на основе искусственного интеллекта. приглашает на диспансеризацию.
Роботы на службе здоровья: медицинская наука XXI века
Если представить, что разговаривающий медицинский робот будет общаться с пациентом столь же успешно, как, например. Первый в России производитель серийных коллаборативных роботов под брендами Робопро и Rozum Robotics. В России создали робота-поводыря с ChatGPT. и наноразмерные роботы, которые свободно двигаются в теле, общаются друг с другом, выполняют свою полезную функцию и. Медицинские роботы могут коммуницировать: они рассказывают, что их беспокоит, полностью воспроизводят физиологию.
Искусственный интеллект в медицине.
Мы проводили внутреннее исследование по эффективности ее работы, то есть диагностической точности, эффективность растет в разы». Тестировать приложение помогают врачи. Они отмечают, что робот-диагност уже очень неплох. Надежда — пациентка онколога Игоря Самойленко. У нее на плече появилось подозрительное образование. Его обследуют, как обычно, а заодно проверяют, что говорит приложение. Блохина: «Приложение считает, что это образование доброкачественное, как, собственно говоря, и я считаю. Но для более точной постановки диагноза рекомендуется пройти дерматоскопию. Мы ее проделали чуть раньше, действительно, там нет признаков недоброкачественности». Еще одно устройство для самодиагностики стоит уже в некоторых многофункциональных центрах Москвы, где посетителей встречает робот.
Он умеет измерять температуру, давление, уровень кислорода и сахара в крови. Устройство само двигается, распознает лица, понимает человеческую речь, может вести диалог, обладает набором медицинских приборов. Ну, чем не медицинский бот? Послее измерения температуры на небольшом экране робот показывается результат, пошаговую инструкцию и информацию о том, какой именно датчик сейчас будет задействован. Некоторые результаты измерений вызвали сомнение. Например, давление всего 99 на 49.
Для того, например, чтобы ориентироваться в пространстве. Из отделения лабораторной диагностики робот привел нашего корреспондента к кабинету компьютерной томографии Также робокошка с легкостью самостоятельно привезет личные вещи. Шуба, которую я сдавала в гардероб. Очень удобно.
Какой замечательный робот — не нужно никуда ходить, — отметила пациентка. Потокам скорых и врачам робот не мешает. Кошку, изучив территорию больницы, запрограммировали так, что, по сути, она существует сама по себе. Вертикальные камеры помогают ей ориентироваться в пространстве. Также есть внизу камеры, которые помогают кошке при возникновении препятствий перед ним остановиться либо поменять маршрут", — объяснил врач травматолог-ортопед отделения неотложной помощи городской клинической больницы имени Филатова Евгений Пуртов. Такие интерактивные помощники работают уже в трех крупных больницах Москвы.
В этом году мы продемонстрировали новые технологические решения и достижения последнего года работы. Были представлены продукты экосистемы RoboScope. Аппаратно-программный комплекс для цифровой микроскопии RoboScope — центральный компонент экосистемы и главный продукт компании, предусматривающий три сценария использования: роботизированная микроскопическая станция, полноформатное сканирование, а также сканирование клю 13 апреля 2023 RoboScope в МГТУ им. Баумана Без нетворкинга сейчас никуда! Новые знакомства, коллаборации и сотрудничества — важные составляющие успешного развития любого современного проекта. На данный момент коллеги активно занимаются разработками медицинских приборов, в том числе устройствами для цифровой микроскопии. Коллеги провели для нас обширную экскурсию по лабораториям, занимающимся микроскопическими исследованиями, в рамках которой нам удалось плодотворно обсудить варианты применения роботизации в современных микроскопических исследованиях, обменяться накопленным опытом и получить ценную информацию от конечных пользователей наших продуктов. После проведения маркетинговых исследований и пообщавшись с конечными пользователями нашего продукта, мы решили добавить новый режим использования для нашего АПК. Теперь управлять сканером можно полностью дистанционно с клавиатуры и мышки — можно мгновенно перемещаться по всей поверхности стекла, менять объективы, наводить фокус в автоматическом и ручном режиме. Врач патологоанатом или цитолог на одном монит 26 сентября 2022 Цифровая трансформация патологоанатомической службы: мост между клиницистом и патологоанатомом Как сократить разобщенность клиницистов и патологоанатомов, разгрузить специалистов от рутинной работы, повысить качество медицинской помощи? Ответы на эти вопросы искали участники сессии «Цифровая трансформация патологоанатомической службы: мост между клиницистом и патологоанатомом», которая прошла в рамках VIII Российского конгресса лабораторной медицины РКЛМ и Российского диагностического саммита РДС. Форумы состоялись 6-8 сентября в Москве. В институте цифровой мед 15 сентября 2022 Российский конгресс лабораторной медицины 2022 В рамках Российского конгресса лабораторной медицины наша команда представила прототип АПК RoboScope на стенде ГК Дельрус. Все три дня мероприятия оказались для нас очень продуктивными, мы получили много интересной критики и познакомились с лучшими решениями на рынке.
Китайская компания выпустила на рынок человекоподобного робота, который будет выполнять функции консультанта в фирменных магазинах автопроизводителя. Об этом автомобильный производитель сообщил на своем официальном сайте. Компания собирается использовать машину в качестве консультанта в своих автомобильных салонах.
В медицинском центре Кувейта появился российский робот-администратор
Благодаря комплексному подходу пациенты не просто получают устройство, а проходят реабилитацию, учатся пользоваться новой рукой. Компания производит семь видов тяговых и бионических протезов кисти, предплечья и плеча. Каждое устройство уникально и производится под конкретный тип травмы пользователя. При этом так же, как и в предыдущем кейсе, протезисты работают со сложными случаями — как с врожденными особенностями, так и с ампутациями. А на все версии протезов устанавливаются запатентованные сенсорные напальчники. Они позволяют значительно повысить качество жизни и облегчить выполнение привычных ежедневных операций, таких как использование смартфонов, планшетов и других touch-поверхностей. При этом «Моторика» продолжает совершенствовать технологии — на ВЭФ представила протез руки с обратной связью. Он позволяет пациенту чувствовать размеры предметов, их мягкость и температуру, устройство также помогает бороться с фантомными болями. Говоря о реабилитации, стоит также отметить разработку резидента фонда «Сколково» — компании «Экзоскелет».
Технология учит их заново ходить. В решении даже есть алгоритмы, обучающиеся на обратной связи пациента — это помогает давать правильную мышечную нагрузку», — отметил Сергей Воинов. Не только устройства Но и этим высокие технологии не ограничиваются — «цифра» способна помогать даже на клеточном уровне. Говоря об отечественных разработках на стыке ИТ и медицины, стоит отметить еще одно важное направление — вакцины и препараты. Благодаря коллаборации с высокотехнологичными компаниями фарминдустрия получает возможность отвечать на современные вызовы даже в самых сложных областях. Например, в онкологии. Так, компания «Альфанил» работает над препаратом для лечения меланомы. Фокус делается на иммунотерапию с более низкой токсичностью лекарства.
Это особенно актуально, поскольку существующая терапия на основе интерлейкина-2 IL-2 не всегда может быть применена необходимое количество раз — как раз из-за высокой токсичности препарата. А еще один резидент фонда «Сколково» — компания «Бетувакс», входящая в группу «Институт стволовых клеток человека», — создает платформу для разработки рекомбинантных белковых вакцин на основе корпускулярного адъюванта-бетулина вирусоподобных частиц.
Мы ее проделали чуть раньше, действительно, там нет признаков недоброкачественности». Еще одно устройство для самодиагностики стоит уже в некоторых многофункциональных центрах Москвы, где посетителей встречает робот. Он умеет измерять температуру, давление, уровень кислорода и сахара в крови. Устройство само двигается, распознает лица, понимает человеческую речь, может вести диалог, обладает набором медицинских приборов. Ну, чем не медицинский бот?
Послее измерения температуры на небольшом экране робот показывается результат, пошаговую инструкцию и информацию о том, какой именно датчик сейчас будет задействован. Некоторые результаты измерений вызвали сомнение. Например, давление всего 99 на 49. Согласно правилам, пациент должен сидеть, а рука с манжетой находиться в расслабленном состоянии. А тут мало того что приходится стоять, так робот еще просит опереться на одну из панелей. Результат обычного тонометра — 128 на 66. Это больше похоже на правду.
Измерение сахара в крови проводится здесь неинвазивным способом, который недостаточно точен. Как выяснила программа « Чудо техники », внести каплю паники медицинский бот реально может. Идея обратить внимание людей на свое здоровье хорошая, но над точностью стоит еще поработать. Несомненно, роботов в медицине будет все больше.
Инфографику 3. В мае 2023 года Правительство расширило программу поддержки производителей высокотехнологичной реабилитационной продукции.
Субсидии предоставляются на финансовое обеспечение затрат на разработку, испытание и внедрение инновационной продукции реабилитационной направленности с участием инвалидов. На один проект можно получить до 50 млн. Инфографика 3 В 2022 г. Среди них - апробация внедрения универсального гидравлического протеза бедра. Также Агентство по технологическому развитию по инициативе Минпромторга России поддерживает проекты, которые предусматривают разработку конструкторской документации на комплектующие изделия. Кроме того, в рамках федерального проекта «Оптимальная для восстановления здоровья медицинская реабилитация», в 2023 году Правительством было выделено свыше 9 млрд.
Таким образом, наряду со специализированными центрами и санаториями, проводить медицинскую реабилитацию теперь могут все городские и районные медицинские учреждения, а также федеральные центры, в том числе специализирующиеся на оказании высокотехнологичной медицинской помощи. По данным РБК в 2024 году в рамках госпрограммы «Доступная среда» финансирование комплекса мероприятий, направленных на обеспечение инвалидов и детей-инвалидов реабилитационными и абилитационными услугами, а также техническими средствами реабилитации, запланировано на уровне 58,76 млрд руб. Из них 55,78 млрд руб. В 2025 году на эти цели планируется финансирование в объеме 55,89 млрд руб.
Первое использование робота PUMA 560 в хирургии Считается первым примером использования робота в хирургических целях 2000 Впервые FDA одобряет хирургическую систему da Vinci Это стало прорывом, так как da Vinci позволил выполнить более точные и менее инвазивные операции 2010 Роботы начинают использоваться для реабилитации пациентов Это считается новым направлением в области робототехники в медицине, сосредоточенным на восстановлении двигательных функций 2020 Внедрение роботов для борьбы с COVID-19 Роботы использовались для минимизации контакта медперсонала с инфицированными, что показало их способность адаптироваться к новым медицинским вызовам Таблица, показывающий ключевые моменты и прорывы в области медицинской робототехники за последние десятилетия Однако, эти роботы — это только верхушка айсберга. Современные технологии дополняются искусственным интеллектом и машинным обучением, что позволяет создавать все более продвинутые и адаптивные роботизированные системы. Например, роботы, которые могут помочь в диагностике, предложить лечение или даже провести операцию под контролем врача. Несмотря на все эти прогрессивные достижения, важно помнить о влиянии этих технологий на качество ухода за пациентами и результаты лечения. Робототехника в медицине не заменяет человеческий контакт, но она может улучшить эффективность и качество оказываемых услуг.
Их внедрение может помочь врачам уделить больше внимания пациенту, оптимизировать процессы и снизить нагрузку на медицинский персонал. В заключение, робототехника в медицине продолжает расширять свои границы и изменять понятие о том, что возможно в здравоохранении. Она уже вносит значительный вклад в улучшение качества жизни пациентов и оказание медицинской помощи. И это только начало: с возрастающими возможностями искусственного интеллекта и робототехники, будущее медицины выглядит очень обещающим. Перспективы робототехники в медицине Погружаясь в обсуждение перспектив робототехники в медицине, мы начинаем понимать, что мир на пороге эпохи, когда роботы будут играть еще более значимую роль в здравоохранении. С каждым годом медицинские роботы становятся все более продвинутыми благодаря комбинации искусственного интеллекта, машинного обучения и продвинутых технологий. Мы ожидаем, что по мере развития этих технологий возможности роботов будут только расширяться. В первую очередь, можно предположить, что хирургическая робототехника будет развиваться в сторону более сложных и точных процедур. Совершенствование технологий управления и улучшение тактильной обратной связи могут привести к созданию роботов, которые смогут выполнить операцию с точностью, недоступной даже самым квалифицированным хирургам.
В области реабилитации возможности робототехники тоже неисчерпаемы.
Новости по теме: медицинские роботы
В трех больницах Москвы появились роботы-помощники с кошачьими ушами и глазами — «робокошки». В целом медицинские роботы сегодня используются в нескольких направлениях. В целом медицинские роботы сегодня используются в нескольких направлениях. Самые актуальные новости из мира робототехники и инновационных технологий.
Илон Маск рассказал, когда человекоподобный робот Optimus поступит в продажу
Робот может вызвать врача на дом, записать к медицинскому специалисту на прием, а также сам выполняет исходящий обзвон - приглашает на диспансеризацию, напоминает о необходимости визита к врачу пациентам, состоящим на учете, мониторит качество оказания скорой медицинской помощи. В этом году голосовая помощница обработала более 6 млн звонков.
И роботохирургия, по их мнению, как раз та технология, в которую можно инвестировать и деньги, и ресурсы, даже в трудное для страны время. Специалист самого широкого профиля Несмотря на относительно невысокую стоимость, он охватывает огромный комплекс самых востребованных хирургических вмешательств. Это операции в брюшной полости абдоминальная хирургия , гинекология и урология. Его можно использовать для нейро- и кардиохирургии и даже для пластических операций, всего лишь расширив линейку инструментов. Также у робота есть функция мини-доступа, чтобы проводить операции у детей. Другие его преимущества — возможность применения лазера и прочих инструментов, мобильность, удобство для врача, который контролирует весь процесс операции на специальном мониторе.
Наш робот — это платформенное решение, он может быть как индивидуальным роботом так и элементом робото-ассистированной хирургии», — говорит академик Пушкарь. Робот сам обучает хирургов Помимо финансового вопроса, российские ученые успешно преодолели еще одно препятствие для широкого внедрения роботов-хирургов. Речь идет о подготовке специалистов. Американский робот объективно более сложный, и работа на нем требует долгой и серьезной подготовки. Программа обучения российской разработки проще, менее затратна по времени и более доступна для персонала хирургических отделений. Кроме того, робот может сам обучать специалистов, это предусмотрено в его программном обеспечении. Причем тут «Левша»?
И наконец, самое главное преимущество отечественного робота-хирурга — это его высокая точность. Чтобы продемонстрировать ее, разработчики что называется «подковали блоху», то есть сняли наглядное видео по аналогии с промо-роликом da Vinci, в котором робот-хирург делает операцию на кожице виноградины и благополучно зашивает ее.
Напомним, в декабре 2022 года компания Tesla представила первого человекоподобного робота - Optimus. Прототип модели, который был разработан еще в феврале, вышел на сцену, чтобы помахать присутствующим и станцевать перед ними. Tesla также показала видео, на котором робот выполняет простые задачи, такие как полив растений, переноска ящиков и подъем металлической арматуры на производственной станции в Калифорнии.
Разработка ИТМО позволяет получать медицинские изделия сразу с необходимыми свойствами. Эта роботизированная система включает в себя лазерную установку, робота-манипулятора с шестью осями и программное обеспечение. Она использует компьютерное зрение для адаптации к точной геометрии изделия и может выполнять четыре основные задачи: придавать антибактериальные свойства, управлять шероховатостью поверхности, наносить цветную маркировку и удаление остаточных частиц. Робот может снабжать медицинские изделия антибактериальными свойствами с помощью оксидного слоя титана, который активируется ультрафиолетовым излучением.