Решение Задач Егэ По Информатике В Excel, Артем Flash. ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26".
Задание 26 | ЕГЭ по информатике | ДЕМО-2024
Информатика. Решения, ответы и подготовка к ЕГЭ от Школково. В этой статье посмотрим некоторые задачи из 26 задания ЕГЭ по информатике. Смотрите видео онлайн на Смотрите сериалы бесплатно, музыкальные клипы, новости мира и кино, обзоры мобильных устройств. Тренировочные тесты ЕГЭ-2020 по всем предметам для 11 класса от авторов «СтатГрада» и других экспертов. Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления.
Задание 26 егэ информатика перестановка букв.
В следующих N строках находятся пары чисел: ряд и место выкупленного билета числа не превышают 100000. В ответе запишите два целых числа: сначала максимальный номер ряда, где нашлись обозначенные в задаче места и минимальный номер места. Пример входного файла: Пример входных данных к заданию 26 ЕГЭ по информатике Для данного примера ответом будет являться пара чисел 60 и 23. Решение Согласно условию задачи нам следует найти самый большой номер ряда, в котором найдется 2 соседних незанятых места, что слева и справа от них будут 2 занятых места, что соответствует схеме занято - свободно - свободно - занято. Если мы нашли такой номер ряда, и оказалось, что таких схем в нем несколько, то нужно выбрать минимальный номер свободного места. Алгоритм решения задачи Читаем данные из файла в список списков.
Это задание лишилось простого решения, где ответ можно было получить обычным перебором, используя граф.
Теперь из-за больших величин аргументов стоит опираться в первую очередь на аналитическое мышление. А также понимать, что именно считает функция. Задание не вызовет серьезных проблем, если ребенок разбирается в программировании. Для решения нужно знать, как записывать логические выражения на языке программирования, а также понимать структуру циклов перебора и алгоритма ветвления. Вторая категория — «числовые отрезки». Основную трудность вызывает применение законов алгебры логики для упрощения выражений.
Ученики либо не видят способ применения того или иного закона, либо просто забывают о них. Поэтому в этом задании нужно как можно больше практики.
Про русский я не знаю, были ли ровно те же тексты. Мой ребенок оба эти экзамена в 1 день сдавал Anonymous Тексты были разные 3 и 4, у нас дети сверяли. Хотя ребенок писал 3, если что сказал бы Anonymous Мой 4. Повторов не было.
У нас все 11 пополам поделили на 3 и 4. У всех экзаменов есть резервные дни для сдачи. Везде одинаковые варианты? Так что чушь не пишите Anonymous 25. Дети рассказывают, что сегодня те же варианты. Которые они вчера узнали от сдававших вчера.
А сама я и вчера не была, конечно, я не школьник Anonymous 25. Наши вчера писали, сказали, что сложно. Не смогли, не успели сделать все...
Каждому острову на схеме соответствует его номер в таблице, но неизвестно, какой именно. Чтобы спланировать путешествие, Ане и Тане нужно определить длину моста между островами Ж и Е. Заметим, что острова Д и Е уникальны в том смысле, что от них построено уникальное число мостов: от Д — два, от Е — четыре. Заметим, что от остальных островов отходит по три моста. Далее по таблице определяем, с каким номером у О1 и О6 общая связь смотрим на строки О1 и О6 и видим, что есть мост между О1 и О5 — и мост между О6 и О5. Далее находим длину моста между Ж и Е то есть между О5 и О8. Искомая длина — 17.
Ответ: 17 Задание 5 10270 Артём и Саша гуляют по парку аттракционов. На рисунке представлена схема проходов между аттракционами. В таблице звездочкой обозначено наличие прохода от одного аттракциона к другому, отсутствие звездочки означает, что такого прохода нет. Каждому аттракциону на схеме соответсвует его номер в таблице, но неизвестно, какой именно. Определите, какие номера в таблице могут соответствовать аттракционам В и З на схеме. Заметим, что аттракционы Д и Б уникальны в том смысле, что из них выходит уникальное число проходов: из Д — четыре, от Б — два. Далее заметим, что у нас два аттракциона, из которых выходят два прохода — Е и В. В ответ запишем номера аттракционов в порядке возрастания: 47. Ответ: 47 Задание 6 10278 На рисунке представлена схема дорог около города Утьского района. В реестре учета дорог этого города содержатся сведения об их длине.
Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии
Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку. Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров. Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета.
В ответе запишите два целых числа: сначала максимально возможное количество контейнеров в одном блоке, затем минимальное количество ячеек для хранения всех контейнеров.
Проблемы : ровно два из его делителей входят в список среднее арифметическое всех найденных чисел сумма может быть очень велика! Изображение слайда Слайд 21: 17. Divs 13 , 1 - sign x mod 19 ; if divs. Divs 13 , 1 - sign x mod 19 ; можно по-разному!
Изображение слайда Слайд 22: 25. Пример 22 Статград Найдите все натуральные числа, принадлежащие отрезку [289123456; 389123456] и имеющие ровно три нетривиальных делителя. Для каждого найденного числа запишите в ответе его наибольший нетривиальный делитель. Проблемы : долго считает… Изображение слайда Слайд 23: 25. Divs d then divs.
Add d ; if divs. Изображение слайда Слайд 24: 25. Три нечётное число нетривиальных делителя — полный квадрат! Изображение слайда Слайд 27: 25. Готовые функции 27 Демо-2021 Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа.
Изображение слайда Слайд 28: 25. Divizors ; if divs. Divizors ; Изображение слайда Слайд 29: 25. Функциональный стиль 29 uses school ; 174457.. Print Lines ; 174457..
Функциональный стиль 31 10.. PrintLines ; заменить каждый элемент последовательности на список его делителей [1,2,5,10] [1,11] [1,2,3,4,6,12] [1,13] [1,2,7,14] [1,3,5,15] [1,2,4,8,16] [1,17].. Функциональный стиль 32 10.. PrintLines ; отобрать те элементы списка, где количество делителей равно 4 [1,2,5,10] [1,2,7,14] [1,3,5,15] 10 14 15 Изображение слайда Слайд 33: 25. Функциональный стиль 33 10..
PrintLines ; заменить каждый элемент списка на пару кортеж , состоящую из двух нетривиальных делителей 2,5 2,7 3,5 10 14 15 Изображение слайда Слайд 34: 25. Пример 34 Б.
Файл с данными: 24. Задание 25 Демо-2022 Пусть M — сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей и у числа нет, то значение M считается равным нулю. Напишите программу, которая перебирает целые числа, большие 700 000, в порядке возрастания и ищет среди них такие, для которых значение M оканчивается на 8. Выведите первые пять найденных чисел и соответствующие им значения M. Формат вывода: для каждого из пяти таких найденных чисел в отдельной строке сначала выводится само число, затем — значение М. Строки выводятся в порядке возрастания найденных чисел.
Следовательно, Саша выигрывает своим первым ходом.
Если начальная позиция 20; 39 , то после первого хода Коли может получиться одна из четырёх позиций: 22; 39 всего 61, 40; 39 всего 79, 20; 41 всего 61, 20; 78 всего 98. Для каждой из полученных позиций Саша, удвоив число камней во второй куче, получит соответственно позиции 22; 78 , 40; 78 , 20; 82 , 20; 156. Если начальными являются позиции 10; 42 , 8; 44 , 20; 37 , то выигрывает Коля своим вторым ходом. Если начальной является одна из позиций 10; 42 или 8; 44 , то, чтобы выиграть, Коля должен после своего хода получить позицию 10; 44. Для этого он должен увеличить на 2 число камней либо во второй куче для позиции 10; 42 , либо в первой для позиции 8; 44. Считая позицию 10; 44 начальной, мы приходим к рассмотрению ситуации задания 1. Как уже было показано выше, в этом случае выигрывает тот, кто ходит вторым. Значит, выиграет Коля своим вторым ходом. Если начальная позиция 20; 37 , то, чтобы выиграть, Коля должен увеличить во второй куче число камней на 2. Тогда после его хода получится позиция 20; 39.
Считая эту позицию начальной, мы приходим к рассмотрению ситуации задания 1. Если начальной является позиция 8; 42 , то выигрывает Саша не более чем за два хода. После первого хода Коли из начальной позиции 8; 42 можно получить одну из следующих: 10; 42 , 16; 42 , 8; 44 , 8; 84. Если на начало хода Саши будет одна из позиций 10; 42 , 8; 44 , то он выиграет своим вторым ходом.
Задание №26 в Excel
За это задание вы можете получить 2 балла на ЕГЭ в 2024 году. Тегипрезентации к подготовке к егэ по информатике, рустьюторс задание 26 егэ, егэ информатика 26 задание критерии. Задания по информатике.
Задание 26 ЕГЭ-2019 по информатике: теория и практика
Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). Эфир, посвященный ЕГЭ по информатике, открыл финальный день онлайн-марафона Рособрнадзора «ЕГЭ – это про100!». Задание 3. Демоверсия ЕГЭ 2018 информатика (ФИПИ): На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).
Похожие статьи
- Постоянные читатели
- ЕГЭ по информатике 2023 - Задание 26 (Сортировка)
- Всё, что нужно знать о ЕГЭ по информатике
- Информатика ЕГЭ 2021. Задание 26 в Excel. № 2650 с сайта Полякова
Всё, что нужно знать о ЕГЭ по информатике
В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python. Готовься к ЕГЭ по Информатике с бесплатным Тренажёром заданий от Новой школы. Здесь ты найдешь задания №15 ЕГЭ с автоматической проверкой и объяснениями от нейросети. Разбор задания 26 из ЕГЭ по информатике с помощью Python. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.
Досрочный период КЕГЭ по информатике 9 апреля 2024
Причиной невынужденных ошибок чаще всего оказывается обидная невнимательность в чтении условия, додумывание формулировок и вопросов. Это приводит к потере баллов даже у самых подготовленных школьников», — прокомментировал Сергей Сосенушкин. Он рекомендовал выпускникам уделить как можно больше времени решению задач во время подготовки. Такой опыт позволит избежать ошибок по невнимательности и даст уверенность при выполнении заданий. Учитель информатики Анна Пузанкова рассказала, что она со своими учениками отрабатывает задания как отдельные, так и полные варианты, чтобы каждый мог проверить свои знания, определить проблемные темы и при необходимости исправить существующие недочеты.
В первый год использования формата было найдено много лазеек, которые позволяли упростить решение некоторых задач. Тогда многие переписали эту программу в компилятор, увидели результат и получили за это 2 балла. Что из себя представляют эти задания сейчас Вот формулировка ФИПИ: Теперь в задании 6 согласно демоверсии экзамена нужно проанализировать работу исполнителя на примере «черепашки». Кто сдавал ОГЭ, могут это вспомнить. А вот задание 22 требует анализировать информацию, представленную в электронных таблицах. Также стоит ожидать усложнения еще ряда заданий. Ранее требовалось только знать, как производится перевод чисел в различные системы счисления либо как проводить операции сложения и вычитания. Теперь же от учащегося требуют найти недостающую цифру числа. Задание 16 «Рекурсия».
Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров. Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета.
Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров. Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета.
Егэ информатика 26 задание решение
- Задание 27
- ЕГЭ по информатике 2023 — Задание 26 (Сортировка)
- Задание 26. Алгоритмы сортировки. Обработка целочисленной информации.. ЕГЭ 2024 по информатике
- ЕГЭ по информатике с решением, разбор заданий, примеры, ответы в Москве
- Новая школа: подготовка к ЕГЭ с нуля
Задание КИМ 26. Обработка данных через сортировку. Источник: Поляков
Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены заняты. Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар. Работа со списком. Основы программирования. Входные данные задания 26 ЕГЭ В первой строке входного файла находится одно число: N — количество занятых мест натуральное число, не превышающее 10000.
Например, полное дерево игры не является верным ответом на это задание. Запишем условие более понятным языком. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше. Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Решение задания 1а.
Ответ на задание 1а. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Решение задания 1б. Минимальное значение - 7. Ответ на задание 1б. Решение задания 2. Необходимо найти такое значение S количество камней во второй куче , при котором Петя не сможет выиграть своим первым ходом, но и Ваня также не может выиграть своим первым ходом.
Причем, любой ход Вани создает выигрышную ситуации для Пети, который выигрывает своим вторым ходом.
Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета. В ответе запишите два целых числа: сначала максимально возможное количество контейнеров в одном блоке, затем минимальное количество ячеек для хранения всех контейнеров.
Полное решение и правильный ответ в самом видео. Информатика ЕГЭ Статград 15122022.
Получим 12, 66. Суммарно — 78. Получим 6, 68. Суммарно — 74. Получим 6, 132.
Суммарно — 138. Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции.
В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке. При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно.
При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход. Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода.
Докажем это. Таким образом, получается позиция 6,33. Как мы выяснили ранее, в позиции 6,33 тот, кто ходит, проигрывает. В нашем случае будет ход Вани. Поэтому Ваня проиграет в один ход. Аналогично в позиции 7, 32. В этой позиции согласно тем же рассуждениям, тот, кто ходит, проигрывает.
Будет ход Вани, поэтому Ваня проиграет. Аналогично в позиции 8, 31. Задание 3 Обсуждение Заметим, что из ситуации 7, 31 очень легко попасть либо в ситуации 8, 31 и 7, 32 , в которых, согласно предыдущему Заданию, тот, кто ходит, выигрывает, либо в ситуации 14, 31 и 7, 62 , в которых тот, кто ходит, может выиграть в один ход, увеличив в два раза количество камней во второй кучке. Таким образом, получается, что у Вани должна быть выигрышная стратегия. При этом он может выиграть как в 2 хода первые два случая , так и в один ход вторые два случая. Формальное решение В начальной позиции 7, 31 выигрывает Ваня в один или два хода. Для этого построим дерево всех партий.
Дерево всех партий для начальной позиции 7, 31. Согласно дереву всех партий Ваня выигрывает либо в один ход в случае, если Петя увеличил в два раза количество камней в первой или второй кучках , либо в два хода если Петя увеличил на 1 количество камней в первой или второй кучках. Таким образом, в начальной позиции 7, 31 у Вани имеется выигрышная стратегия, при этом Ваня выиграет в один или два хода. Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков?
Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша один в два раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 14 или 8 камней. У каждого игрока, чтобы сделать ход, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 28.
Похожие статьи
- Информатика ЕГЭ (спрашивает Anonymous) в 3618528 топике
- Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация
- Разбор 26 задания ЕГЭ 2017 по информатике из демоверсии
- ЕГЭ по информатике 2023