В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию. Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма.
Теория струн, или Теория всего
Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. Рассказать о теории струн кратко вряд ли получится. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений.
Что такое теория струн? Простой обзор
Впрочем, это подразумевало пересмотр размеров главных «героев» теории — струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона — частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило.
Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. Субатомные матрешки Несмотря ни на что, в начале 1980? Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего.
Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц — электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц — кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны.
Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства — массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно.
Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства.
О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку. На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году.
Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики. Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью.
Главным достижением теории струн является отказ от пертурбативного основанного на теории возмущений взгляда на модели КТП, что позволяет интерпретировать разные физические теории как различные фазы единой «теории всего», а конкретные модели относить к различным классам универсальности, связанным системой «дуальностей». В физике источником такого подхода стал переход от вопроса, «как» устроены законы природы, к вопросу, «почему» они устроены именно так. Это, с одной стороны, усилило интерес к изучению возможных, но не реализованных типов устройства мироздания, а с другой — сблизило постановку задачи исследования в физике и математике. Естественным следствием такого подхода стало представление о нашей Вселенной как об одной из многих возможных, что нашло выражение в гипотезе Мультиленной Multiverse и в антропном принципе. На более простом уровне теория струн побудила к поиску аналогий между моделями квантовой теории, используемыми в различных областях физики, но принадлежащими одному классу универсальности. Это со временем может привести к широкому применению аналоговых экспериментов и уже вызвало бурное развитие компьютерных методов физики в качестве дополнения к обычным прямым экспериментам. В узком смысле термин «теория струн» применяется для конкретного обобщения стандартной КТП, в которой точечные частицы заменены одномерными струны или многомерными браны протяжёнными объектами, взаимодействие между которыми происходит в отдельных точках.
В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее. Противоречие физики Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды — одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно — при расчете энергии излучения абсолютно черного тела гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны — NS. Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности. Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других — проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики. Уровни строения мира: 1. Макроскопический уровень — вещество 2. Молекулярный уровень 3. Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6. Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак. Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». Вначале был миф До сих пор далеко не все физики пребывают в восторге от теории струн.
Разбирая мир до микрочастиц, ученым приходилось делать вид, будто нет никакой силы притяжения между звездами, галактиками, планетами и Солнцем. Теория струн стала вмиг популярна, потому что она выступила объединяющим мостиком между квантовой механикой и общей теорией относительности, которые имели противоречия и никак не могли ужиться друг с другом. Объяснить все и сразу — это была давняя мечта Эйнштейна и многих других ученых, осознававших, что существующие теории не решают всех загадок макро- и микромира. Некоторые даже думали, что все законы физики возможно объяснить одним уравнением — осталось лишь догадаться, что это за формула. Почти приблизились к этому Джоэль Шерк и Джон Шварц. Позже они с обидой говорили, что теория струн изначально потерпела неудачу потому, что физики недооценили ее масштаб. Игры нашего разума Какая польза от этих знаний, спросите вы? Ну, во-первых, она раздвигает границы воображения. Люди задумались над тем, что мир может быть устроен совсем не так, как кажется: возможно, Вселенная суперсимметрична и имеет 11 измерений. Не исключено, что есть частицы, которые еще не открыты и мы о них не догадываемся. Теория струн — это лишь теоретическая физика, отталкивающаяся от математических расчетов и родившаяся из любопытства ученых, любящих задавать вопрос «А что, если?.. Несколько досадных нестыковок и противоречий мешают ее сторонникам спать по ночам и восклицать на публику: «Осанна! Мы наконец-то объяснили все! Текст: Евгения Шмелева На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc.
Что такое теория струн
Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы. Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67]. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг.
Данный подход впервые использован в работах Габриэле Венециано [68] , который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля , индуцирующего инфляционное расширение. В струнной космологии вместо этого вводится так называемое дилатонное поле [69] [70] , кванты которого, в отличие, например, от электромагнитного поля , не являются безмассовыми , поэтому влияние данного поля существенно лишь на расстояниях порядка размера элементарных частиц или на ранней стадии развития Вселенной [71]. Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной.
Во-вторых, понятие T-дуальности , то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии [72]. В-третьих, число пространственно-временных измерений в теории струн больше четырёх, поэтому космология должна описывать эволюцию всех этих измерений. Вообще, особенность теории струн состоит в том, что в ней, по-видимому, геометрия пространства-времени не фундаментальна, а появляется в теории на больших масштабах или при слабой связи [73]. Косвенные предсказания Несмотря на то, что арена основных действий в теории струн недоступна прямому экспериментальному изучению [74] [75] , ряд косвенных предсказаний теории струн всё же можно проверить в эксперименте [76] [77] [78] [79]. Во-первых, обязательным является наличие суперсимметрии. Ожидается, что запущенный 10 сентября 2008 года , но полноценно [80] вступивший в строй в 2010 году Большой адронный коллайдер сможет открыть некоторые суперсимметричные частицы.
Во-вторых, в моделях с локализацией наблюдаемой вселенной в мультивселенной изменяется закон гравитации тел на малых расстояниях. В настоящее время проводится ряд экспериментов, проверяющих с высокой точностью закон всемирного тяготения на расстояниях в сотые доли миллиметра [81]. Обнаружение отклонения от этого закона было бы ключевым аргументом в пользу суперсимметричных теорий. В-третьих, в тех же самых моделях гравитация может становиться очень сильной уже на энергетических масштабах порядка нескольких ТэВ , что делает возможной её проверку на Большом адронном коллайдере. В настоящее время идёт активное исследование процессов рождения гравитонов и микроскопических чёрных дыр в таких вариантах теории. Наконец, некоторые варианты теории струн приводят также и к наблюдательным астрофизическим предсказаниям.
Суперструны космические струны , D-струны или другие струнные объекты, растянутые до межгалактических размеров, обладают сильным гравитационным полем и могут выступать в роли гравитационных линз.
Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьёзные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближённое решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближённый вид.
Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближённые решения приближённых уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближённые уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближённых методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надёжно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период «засухи» время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближённых решений. Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г.
В нём он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия. Трудности, которые лежат впереди, будут серьёзным испытанием для учёных, работающих в этой области, но в результате свет в конце тоннеля, хотя ещё и отдалённый, может стать видимым. В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции.
Другая особенность суперструн — они, по мнению ученых, существуют в одиннадцатимерном пространстве. Что такое одиннадцать измерений, представить наглядно невозможно. Я могу объяснить, что такое пять измерений. Если представить водопроводный шланг, по которому насекомое спокойно может передвигаться вдоль и поперек — это нормальное наше измерение. Представьте, что эта трубочка свернута до планковской длины волны. С точки зрения любого наблюдателя, это будет одномерная линия.
С точки зрения реальности физической — двухмерная линия.
Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными. Однако в 1995 году американский физик-теоретик объединил все пять теорий в одну 11-мерную теорию, называемую М-теорией. Это может обеспечить основу для построения единой теории всех фундаментальных сил во Вселенной. Кто открыл теорию струн? Целью этой программы было заменить локальную квантовую теорию поля как основной принцип физики элементарных частиц. Ускорители частиц 1950-х и 60-х годов в изобилии производили адроны.
Физики изобрели множество различных моделей для описания структуры спинов и масс этих сильно взаимодействующих частиц состоящих из кварков. Итальянский физик-теоретик Габриэле Венециано сыграл главную роль в разработке этих ранних моделей. Он сформулировал основы теории струн в 1968 году, когда обнаружил, что крошечные струны могут описывать взаимодействия адронов. Он также опубликовал статью в 1991 году, в которой описывается, как инфляционная космологическая модель может быть получена из теории струн. Сегодня, благодаря совместным усилиям многих исследователей, теория струн превратилась в широкую и разнообразную тему, связанную с чистой математикой, космологией, физикой конденсированного состояния и квантовой гравитацией. Является ли теория струн теорией всего? Ну, быстрый ответ - нет. Теория Всего - это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной.
Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения. Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной - через 10—43 секунды после Большого взрыва. Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными. Например, теория струн допускает около 10500 вселенных или обширную мультивселенную. Это одна из причин, она столкнулась с многочисленными неудачами в прошлом.
Теория струн. Теория всего
Обнаружено новое доказательство теории струн — Странная планета | Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения. |
Квантовая теория струн | Теория струн кратко и понятно. Видео от пользователя. |
Квантовая теория струн
«Что такое теория струн простыми словами (насколько это возможно)?» — Яндекс Кью | Самые интересные и оперативные новости из мира высоких технологий. |
Вы точно человек? | теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. |
Теория струн для чайников | Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма. |
Теория струн для чайников | В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. |
Популярно о теории струн
Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. Тегичто такое теория струн для чайников, о чем теория струн кратко, m теория струн, теория струн и м теория современное введение, теория струн сумма всех натуральных чисел.
Космический эксперимент поставил под сомнение теорию струн
Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни. Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Теория струн, или Теория всего.